# IN1104 LVDS 4 Port High Speed Repeater

FAIRCHILD

SEMICONDUCTOR®

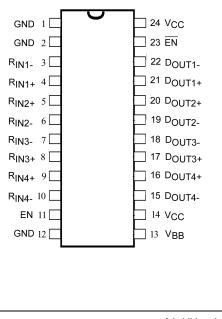
# FIN1104 LVDS 4 Port High Speed Repeater

### **General Description**

This 4 port repeater is designed for high speed interconnects utilizing Low Voltage Differential Signaling (LVDS) technology. The FIN1104 accepts and outputs LVDS levels with a typical differential output swing of 330 mV which provides low EMI at ultra low power dissipation even at high frequencies. The FIN1104 provides a V<sub>BB</sub> reference for AC coupling on the inputs. In addition the FIN1104 can directly accept LVPECL, HSTL, and SSTL-2 for translation to LVDS.

### Features

- Greater than 800 Mbps data rate
- 3.3V power supply operation
- 3.5 ps maximum random jitter and 135 ps maximum deterministic jitter
- Wide rail-to-rail common mode range
- LVDS receiver inputs accept LVPECL, HSTL, and SSTL-2 directly
- Ultra low power consumption
- 20 ps typical channel-to-channel skew
- Power off protection
- > 7.5 kV HBM ESD Protection
- Meets or exceeds the TIA/EIA-644-A LVDS standard
- Available in space saving 24-Lead TSSOP package
- Open circuit fail safe protection
- V<sub>BB</sub> reference output


# **Ordering Code:**

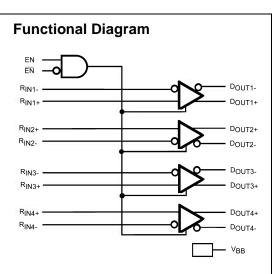
| Order Number           | Package Number            | Package Description                                                         |
|------------------------|---------------------------|-----------------------------------------------------------------------------|
| FIN1104MTC             | MTC24                     | 24-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide |
| Devices also available | in Tape and Reel, Specify | by appending suffix letter "X" to the ordering code.                        |

### **Pin Descriptions**

| Pin Name                                                                         | Description                                 |
|----------------------------------------------------------------------------------|---------------------------------------------|
| R <sub>IN1+</sub> , R <sub>IN2+</sub> ,<br>R <sub>IN3+</sub> , R <sub>IN4+</sub> | Non-inverting LVDS Input                    |
| R <sub>IN1-</sub> , R <sub>IN2-</sub> ,<br>R <sub>IN3-</sub> , R <sub>IN4-</sub> | Inverting LVDS Input                        |
| $\begin{array}{c} D_{OUT1+},  D_{OUT2+}, \\ D_{OUT3+},  D_{OUT4+} \end{array}$   | Non-inverting Driver Output                 |
| $\begin{array}{c} D_{OUT1-},D_{OUT2-},\\ D_{OUT3-},D_{OUT4-} \end{array}$        | Inverting Driver Output                     |
| EN                                                                               | Driver Enable Pin for All Output            |
| EN                                                                               | Inverting Driver Enable Pin for all Outputs |
| V <sub>CC</sub>                                                                  | Power Supply                                |
| GND                                                                              | Ground                                      |
| V <sub>BB</sub>                                                                  | Reference Voltage Output                    |

### **Connection Diagram**




© 2003 Fairchild Semiconductor Corporation DS500656

FIN1104

### **Function Table**

Inputs Outputs EN EN  $\mathbf{D}_{\mathbf{IN}^+}$ D<sub>IN-</sub> D<sub>OUT+</sub> D<sub>OUT-</sub> Н L Н L Н L Н L L Н L Н Н L Fail Safe Case Н L Х н Х Х Ζ Ζ Х L Х Х Ζ Ζ

H = HIGH Logic Level L = LOW Logic Level X = Don't Care Z = High Impedance



# Absolute Maximum Ratings(Note 1)

| Supply Voltage (V <sub>CC</sub> )                | -0.5V to +4.6V   |
|--------------------------------------------------|------------------|
| LVDS DC Input Voltage (VIN)                      | -0.5V to +4.6V   |
| LVDS DC Output Voltage (V <sub>OUT</sub> )       | -0.5V to +4.6V   |
| Driver Short Circuit Current (I <sub>OSD</sub> ) | Continuous 10 mA |
| Storage Temperature Range (T <sub>STG</sub> )    | -65°C to +150°C  |
| Max Junction Temperature (T <sub>J</sub> )       | 150°C            |
| Lead Temperature (T <sub>L</sub> )               |                  |
| (Soldering, 10 seconds)                          | 260°C            |
| ESD (Human Body Model)                           | 7500V            |
| ESD (Machine Model)                              | 400V             |
|                                                  |                  |

# **Recommended Operating** Conditions

| Supply Voltage (V <sub>CC</sub> )       | 3.0V to 3.6V                                   |
|-----------------------------------------|------------------------------------------------|
| Magnitude of Differential               |                                                |
| Voltage ( V <sub>ID</sub>  )            | 100 mV to $V_{\mbox{\scriptsize CC}}$          |
| Common Mode Voltage                     |                                                |
| Range (V <sub>IC</sub> )                | $(0V +  V_{ID} /2)$ to $(V_{CC} -  V_{ID} /2)$ |
| Operating Temperature (T <sub>A</sub> ) | -40°C to +85°C                                 |

FIN1104

Note 1: The "Absolute Maximum Ratings": are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation of circuits outside databook specification.

# **DC Electrical Characteristics**

| Symbol                                       | Parameter                                                         | Test Conditions                                                                         |           | Min              | Typ<br>(Note 2) | Мах                     | Units |
|----------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------|------------------|-----------------|-------------------------|-------|
| V <sub>TH</sub>                              | Differential Input Threshold HIGH                                 | See Figure 1; $V_{IC}$ = +0.05V, +1.2V, or $V_{CC}$                                     | - 0.05V   |                  |                 | 100                     | mV    |
| V <sub>TL</sub>                              | Differential Input Threshold LOW                                  | See Figure 1; $V_{IC}$ = +0.05V, +1.2V, or $V_{CC}$                                     | -0.05V    | -100             |                 |                         | mV    |
| V <sub>IH</sub>                              | Input HIGH Voltage (EN or EN)                                     |                                                                                         |           | 2.0              |                 | V <sub>CC</sub>         | V     |
| VIL                                          | Input LOW Voltage (EN or EN)                                      |                                                                                         |           | GND              |                 | 0.8                     | V     |
| V <sub>OD</sub>                              | Output Differential Voltage                                       |                                                                                         |           | 250              | 330             | 450                     | mV    |
| $\Delta V_{OD}$                              | V <sub>OD</sub> Magnitude Change from<br>Differential LOW-to-HIGH | $R_L$ = 100 $\Omega_i$ Driver Enabled, See Figure 2                                     |           |                  |                 | 25                      | mV    |
| V <sub>OS</sub>                              | Offset Voltage                                                    |                                                                                         |           | 1.125            | 1.23            | 1.375                   | V     |
| $\Delta V_{OS}$                              | Offset Magnitude Change from<br>Differential LOW-to-HIGH          |                                                                                         |           |                  |                 | 25                      | mV    |
| I <sub>OS</sub> Short Circuit Output Current | Short Circuit Output Current                                      | D <sub>OUT+</sub> = 0V and D <sub>OUT-</sub> = 0V,<br>Driver Enabled                    |           |                  | -3.4            | -6                      | mA    |
|                                              |                                                                   | V <sub>OD</sub> = 0V, Driver Enabled                                                    |           |                  | ±3.4            | ±6                      | mA    |
| I <sub>IN</sub>                              | Input Current (EN, EN, D <sub>INx+</sub> , D <sub>INx-</sub> )    | $V_{IN} = 0V$ to $V_{CC}$ , Other Input = $V_{CC}$ or $0V$<br>(for Differential Inputs) |           |                  |                 | ±20                     | μA    |
| I <sub>OFF</sub>                             | Power Off Input or Output Current                                 | $V_{CC} = 0V$ , $V_{IN}$ or $V_{OUT} = 0V$ to 3.6V                                      |           |                  |                 | ±20                     | μΑ    |
| I <sub>CCZ</sub>                             | Disabled Power Supply Current                                     | Drivers Disabled                                                                        |           |                  | 5.4             | 11                      | mA    |
| ICC                                          | Power Supply Current                                              | Drivers Enabled, Any Valid Input Condition                                              |           |                  | 30.4            | 41                      | mA    |
| I <sub>OZ</sub>                              | Disabled Output Leakage Current                                   | Driver Disabled, $D_{OUT+} = 0V$ to 3.6V or $D_{OUT-} = 0V$ to 3.6V                     |           |                  |                 | ±20                     | μA    |
| VIC                                          | Common Mode Voltage Range                                         | $ V_{ID}  = 100 \text{ mV to } V_{CC}$                                                  | 0         | $V +  V_{ID} /2$ |                 | $V_{CC} - ( V_{ID} /2)$ | V     |
| CIN                                          | Input Capacitance                                                 | Enat                                                                                    | ole Input |                  | 2.6             |                         | pF    |
|                                              |                                                                   | LVD                                                                                     | S Input   |                  | 2.1             |                         | р     |
| C <sub>OUT</sub>                             | Output Capacitance                                                |                                                                                         |           |                  | 2.8             |                         | pF    |
| V <sub>BB</sub>                              | Output Reference Voltage                                          | $V_{CC} = 3.3V$ , $I_{BB} = 0$ to $-275 \ \mu A$                                        |           | 1.125            | 1.2             | 1.375                   | V     |

FIN1104

### **AC Electrical Characteristics**

Over supply voltage and operating temperature ranges, unless otherwise specified

| Symbol                | Parameter                                       | Test Conditions                                                                                                        | Min  | Typ<br>(Note 3) | Max  | Units |
|-----------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------|-----------------|------|-------|
| t <sub>PLHD</sub>     | Differential Output Propagation Delay           |                                                                                                                        | 0.75 | 1.1             | 1.75 | ns    |
|                       | LOW-to-HIGH                                     |                                                                                                                        |      |                 |      |       |
| t <sub>PHLD</sub>     | Differential Output Propagation Delay           |                                                                                                                        | 0.75 | 1.1             | 1.75 | ns    |
|                       | HIGH-to-LOW                                     | $R_L = 100 \ \Omega$ , $C_L = 5 \ pF$ ,                                                                                |      |                 |      |       |
| t <sub>TLHD</sub>     | Differential Output Rise Time (20% to 80%)      | $V_{ID} = 200 \text{ mV}$ to 450 mV,                                                                                   | 0.29 | 0.4             | 0.58 | ns    |
| t <sub>THLD</sub>     | Differential Output Fall Time (80% to 20%)      | $V_{IC} =  V_{ID} /2$ to $V_{CC} - ( V_{ID} /2)$ ,                                                                     | 0.29 | 0.4             | 0.58 | ns    |
| t <sub>SK(P)</sub>    | Pulse Skew  t <sub>PLH</sub> - t <sub>PHL</sub> | Duty Cycle = 50%,                                                                                                      |      | 0.02            | 0.2  | ns    |
| t <sub>SK(LH)</sub> , | Channel-to-Channel Skew                         | See Figure 1 and Figure 3                                                                                              |      | 0.02            | 0.15 | ns    |
| t <sub>SK(HL)</sub>   | (Note 4)                                        |                                                                                                                        |      | 0.02            | 0.15 |       |
| t <sub>SK(PP)</sub>   | Part-to-Part Skew (Note 5)                      |                                                                                                                        |      |                 | 0.5  | ns    |
| f <sub>MAX</sub>      | Maximum Frequency (Note 6)(Note 7)              | 1                                                                                                                      | 400  | 800             |      | MHz   |
| t <sub>PZHD</sub>     | Differential Output Enable Time                 | $R_L = 100 \ \Omega, \ C_L = 5 \ \text{pF},$ See Figure 2 and Figure 3                                                 |      | 2.2             | 5    |       |
|                       | from Z to HIGH                                  |                                                                                                                        |      | 2.2             | 5    | ns    |
| t <sub>PZLD</sub>     | Differential Output Enable Time                 |                                                                                                                        |      | 2.5             | 5    | ns    |
|                       | from Z to LOW                                   |                                                                                                                        |      |                 |      |       |
| t <sub>PHZD</sub>     | Differential Output Disable Time                |                                                                                                                        |      | 1.8             | 5    | ns    |
|                       | from HIGH to Z                                  |                                                                                                                        |      | 1.0             | 5    | 115   |
| t <sub>PLZD</sub>     | Differential Output Disable Time                |                                                                                                                        |      | 2.1             | 5    | ns    |
|                       | from LOW to Z                                   |                                                                                                                        |      | 2.1             | 5    | 115   |
| t <sub>DJ</sub>       | LVDS Data Jitter,                               | $V_{ID} = 300 \text{ mV}, \text{ PRBS} = 2^{23} \text{ - } 1,$<br>$V_{IC} = 1.2 \text{V} \text{ at } 800 \text{ Mbps}$ |      | 85              | 135  | ps    |
|                       | Deterministic                                   |                                                                                                                        |      | 05              | 155  | ps    |
| t <sub>RJ</sub>       | LVDS Clock Jitter,                              | V <sub>ID</sub> = 300 mV,                                                                                              | 0.4  | 2.1             | 3.5  | ps    |
|                       | Random (RMS)                                    | V <sub>IC</sub> = 1.2V at 400 MHz                                                                                      |      | 2.1             |      |       |

Note 4: t<sub>SK(LH)</sub>, t<sub>SK(HL)</sub> is the skew between specified outputs of a single device when the outputs have identical loads and are switching in the same direction.

Note 5:  $t_{SK(PP)}$  is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same direction (either Low-to-HIGH or HIGH-to-LOW) when both devices operate with the same supply voltage, same temperature, and have identical test circuits. Note 6: Passing criteria for maximum frequency is the output  $V_{OD} > 200$  mV and the duty cycle is 45% to 55% with all channels switching.

Note 7: Output loading is transmission line environment only;  $C_L$  is < 1 pF of stray test fixture capacitance.

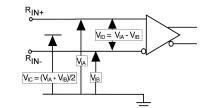
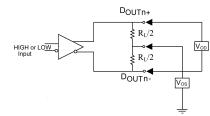
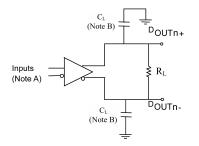
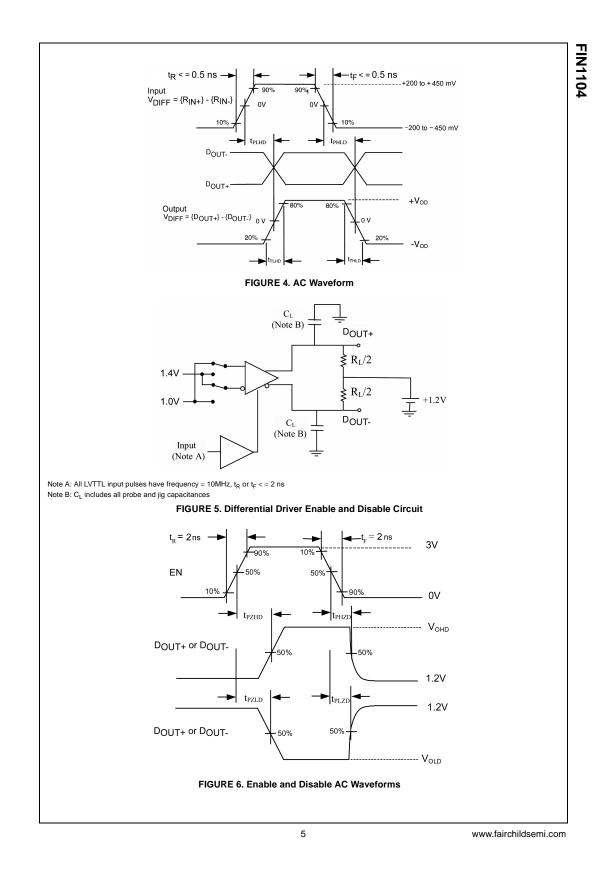
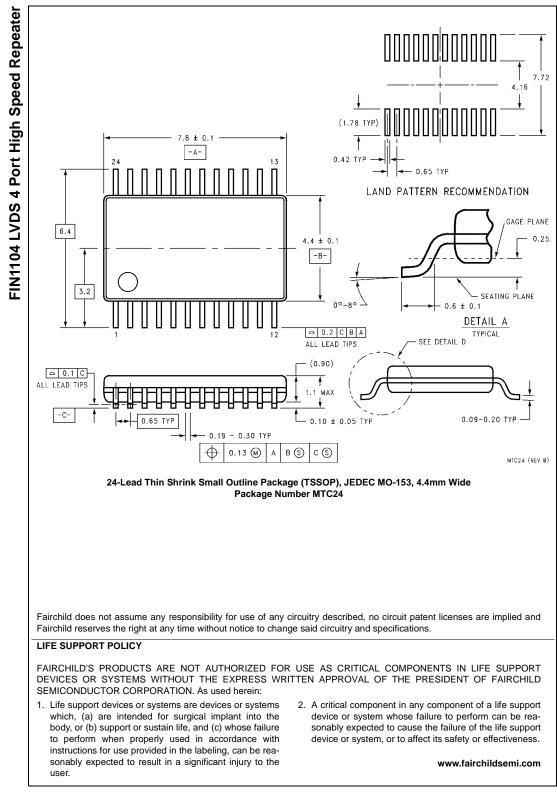





FIGURE 1. Differential Receiver Voltage Definitions and Propagation and Transition Time Test Circuit






Note A: All LVDS input pulses have frequency = 10 MHz,  $t_R$  or  $t_F <$  = 0.5 ns

Note B:  $\mathbf{C}_{\mathsf{L}}$  includes all probe and test fixture capacitances

FIGURE 3. Differential Driver Propagation Delay and Transition Time Test Circuit





ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

### PUBLICATION ORDERING INFORMATION

### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.