

CY7C1399BN

Contents

Pin Configurations	3
Selection Guide	3
Maximum Ratings	4
Operating Range	4
Electrical Characteristics	4
Capacitance	5
AC Test Loads and Waveforms	
Data Retention Characteristics	5
Data Retention Waveform	5
Switching Characteristics	6
Switching Waveforms	
Truth Table	
Ordering Information	11
Ordering Code Definitions	

Package Diagrams	12
Acronyms	14
Document Conventions	14
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	16
Worldwide Sales and Design Support	16
Products	16
PSoC® Solutions	16
Cypress Developer Community	16
Technical Support	

Pin Configurations

Figure 1. 28-pin TSOP pinout (Top View)

TSO Top Vi	-
$22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 $	21 A ₀ 20 CE 19 I/O7 18 I/O6 17 I/O5 16 I/O3 14 GND 13 I/O2 12 I/O1 11 I/O2 12 I/O1 10 A14 9 A13 8 A12

 SOJ Top View

 A₆
 1
 28
 VCC

 A₆
 2
 27
 WE

 A₇
 3
 26
 A₄

 A₈
 4
 25
 A₃

 A₉
 5
 24
 A₂

 A10
 6
 23
 A₁

 A11
 7
 22
 OE

 A12
 8
 21
 A₀

 A13
 9
 20
 CE

 A14
 10
 19
 I/O₇

 I/O₀
 11
 18
 I/O₆

 I/O₁
 12
 17
 I/O₅

 I/O₂
 13
 16
 I/O₄

 GND
 14
 15
 I/O₃

Selection Guide

Description	Condition	-12	-15
Maximum access time (ns)		12	15
Maximum operating current (mA)		55	50
Maximum CMOS standby current (µA)	Commercial	500	-
	Commercial (L)	50	-
	Industrial	500	500
	Automotive-A	-	500

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Storage temperature	–65 °C to +150 °C
Ambient temperature with power applied	–55 °C to +125 °C
Supply voltage on V_{CC} to relative GND ^[1]	–0.5 V to +4.6 V
DC voltage applied to outputs in high Z State ^[1]	–0.5 V to V _{CC} + 0.5 V
DC input voltage [1]	–0.5 V to V _{CC} + 0.5 V

Output current into outputs (LOW)	
Static discharge voltage	
(per MIL-STD-883, Method 3015) >2001 V	
Latch-up current>200 mA	

Operating Range

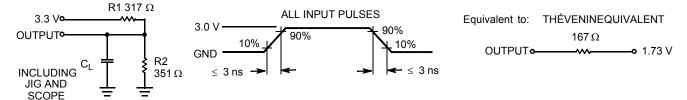
Range	Ambient Temperature	V _{cc}
Commercial	0 °C to +70 °C	$3.3~V\pm300~mV$
Industrial	–40 °C to +85 °C	
Automotive-A	–40 °C to +85 °C	

Electrical Characteristics

Over the Operating Range

Parameter ^[1]	Description	Test Conditions			-12		-15	11
Parameter	Description			Min	Max	Min Max		Unit
V _{OH}	Output HIGH voltage	Min V _{CC} , $I_{OH} = -2$.	0 mA	2.4	-	2.4	-	V
V _{OL}	Output LOW voltage	Min V _{CC} , I _{OL} = 4.0 n	۱A	-	0.4	-	0.4	V
V _{IH}	Input HIGH voltage			2.2	V _{CC} + 0.3	2.2	V _{CC} + 0.3	V
V _{IL} ^[1]	Input LOW voltage			-0.3	0.8	-0.3	0.8	V
I _{IX}	Input leakage current			-1	+1	-1	+1	μA
I _{OZ}	Output leakage current	$GND \le V_{IN} \le V_{CC}, C$	utput disabled	-5	+5	-5	+5	μA
I _{CC}	V _{CC} operating supply current	$\begin{array}{l} \text{Max V}_{\text{CC}}, \text{I}_{\text{OUT}} = 0 \text{ mA}, \\ \text{f} = \text{f}_{\text{MAX}} = 1/\text{t}_{\text{RC}} \end{array}$		-	55	-	50	mA
I _{SB1}	Automatic CE power-down	$Max V_{CC}, \overline{CE} \ge V_{IH},$	Commercial	_	5	-	-	mA
	current – TTL inputs	$V_{IN} \ge V_{IH}$, or $V_{IN} \le V_{IL}$,	Commercial (L)	_	4	-	-	mA
		$f = f_{MAX}$	Industrial	_	5	-	5	mA
			Automotive-A	_	_	-	5	mA
I _{SB2}	Automatic CE Power-down	<u>Ma</u> x V _{CC} ,	Commercial	-	500	-	_	μA
	current – CMOS inputs ^[2]	$\frac{\overline{CE}}{V_{IN}} \ge V_{CC} - 0.3 \text{ V},$ $V_{IN} \ge V_{CC} - 0.3 \text{ V}, \text{ or}$	Commercial (L)	-	50	-	_	μA
		V _{IN} ≤ 0.3 V,	Industrial	-	500	-	500	μA
		$\label{eq:WE} \begin{split} & \widetilde{WE} \geq V_{CC} - 0.3 \ V \ or \\ & WE \leq 0.3 \ V, \\ & f = f_{MAX} \end{split}$	Automotive-A	-	_	-	500	μA

- Notes
 Minimum voltage is equal to -2.0 V for pulse durations of less than 20 ns.
 Device draws low standby current regardless of switching on the addresses.

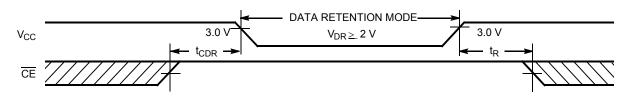


Capacitance

Parameter ^[3]	Description	Test Conditions	Max	Unit
C _{IN} : Addresses	Input capacitance	T _A = 25 °C, f = 1 MHz, V _{CC} = 3.3 V	5	pF
C _{IN} : Controls			6	pF
C _{OUT}	Output capacitance		6	pF

AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms ^[4]


Data Retention Characteristics

(Over the Operating Range - L version only)

Parameter	Description	Conditions	Min	Max	Unit
V _{DR}	V _{CC} for data retention		2.0	_	V
I _{CCDR}	Data retention current	$V_{CC} = V_{DR} = 2.0 V,$	0	20	μΑ
t _{CDR}	Chip deselect to data retention time	$\overrightarrow{CE} \ge V_{CC} - 0.3 \text{ V},$ $V_{IN} \ge V_{CC} - 0.3 \text{ V or } V_{IN} \le 0.3 \text{ V}$	0	_	ns
t _R	Operation recovery time		t _{RC}	Ι	ns

Data Retention Waveform

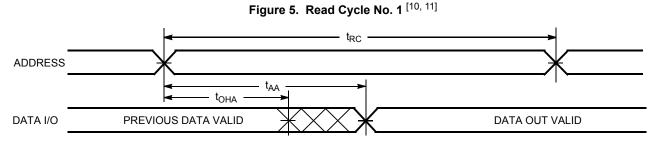
Figure 4. Data Retention Waveform

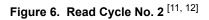
Notes

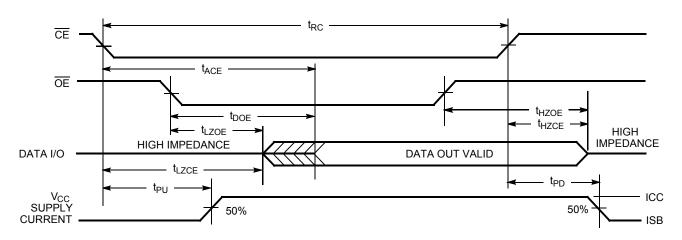
- Tested initially and after any design or process changes that may affect these parameters.
 Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and capacitance C_L = 30 pF.

Switching Characteristics

Over the Operating Range


Parameter ^[5]	Description	-	12	-	15	Unit		
Parameter ¹⁰¹	Description	Min	Max	Min	Мах			
Read Cycle								
t _{RC}	Read cycle time	12	-	15	-	ns		
t _{AA}	Address to data valid	-	12	-	15	ns		
t _{OHA}	Data hold from address change	3	-	3	-	ns		
t _{ACE}	CE LOW to data valid	-	12	-	15	ns		
t _{DOE}	OE LOW to data valid	-	5	-	6	ns		
t _{LZOE}	OE LOW to low Z ^[6]	0	-	0	-	ns		
t _{HZOE}	OE HIGH to high Z ^[6, 7]	-	5	-	6	ns		
t _{LZCE}	CE LOW to low Z ^[6]	3	-	3	-	ns		
t _{HZCE}	CE HIGH to high Z ^[6, 7]	-	6	-	7	ns		
t _{PU}	CE LOW to power-up	0	-	0	-	ns		
t _{PD}	CE HIGH to power-down	-	12	-	15	ns		
Write Cycle ^{[8, 9}	9]					·		
t _{WC}	Write cycle time	12	-	15	-	ns		
t _{SCE}	CE LOW to write end	8	-	10	-	ns		
t _{AW}	Address setup to write end	8	-	10	-	ns		
t _{HA}	Address hold from write end	0	-	0	-	ns		
t _{SA}	Address setup to write start	0	-	0	-	ns		
t _{PWE}	WE pulse width	8	_	10	-	ns		
t _{SD}	Data setup to write end	7	_	8	-	ns		
t _{HD}	Data hold from write end	0	-	0	-	ns		
t _{HZWE}	WE low to high Z ^[8]	_	7	_	7	ns		
t _{LZWE}	WE high to low Z ^[6]	3	-	3	_	ns		


Notes


5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} best conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and capacitance C_L = 30 pF.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZWE} for any given device.
 t_{HZOE}, t_{HZCE}, t_{HZCE}, t_{HZCE}, t_{HZCE}, t_{HZCE} is less than t_{LZWE} for any given device.
 t_{HZOE}, t_{HZCE}, t_{HZCE}, t_{HZCE}, t_{HZCE} are specified with C_L = 5 pF as in AC Test Loads. Transition is measured ±500 mV from steady state voltage.
 The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Notes

- 10. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE} = V_{||L}$. 11. WE is HIGH for read cycle.

12. Address valid prior to or coincident with \overline{CE} transition LOW.

Switching Waveforms (continued)

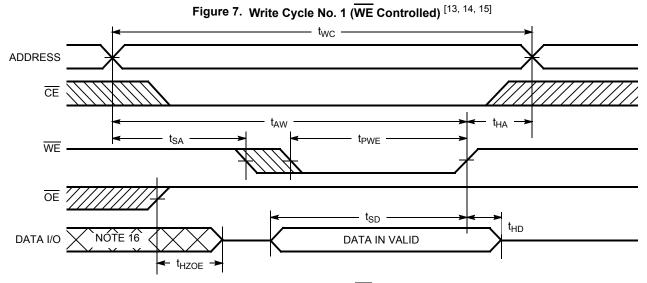
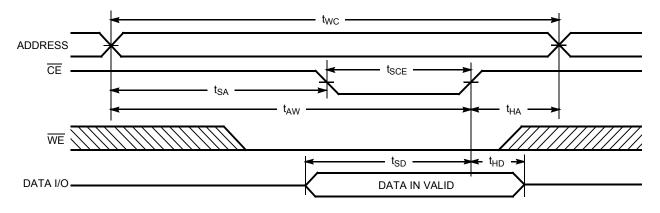
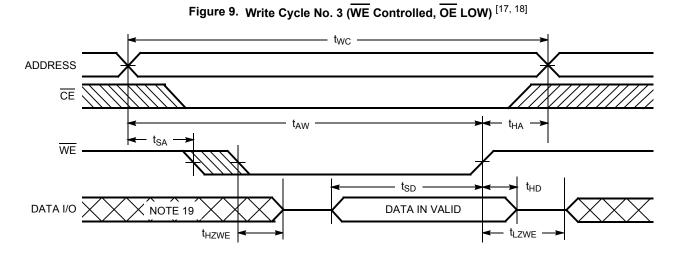



Figure 8. Write Cycle No. 2 (CE Controlled) ^[13, 14, 15]



Notes

13. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
14. Data I/O is high impedance if OE = V_{IH}.
15. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
16. During this period, the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (continued)

Notes

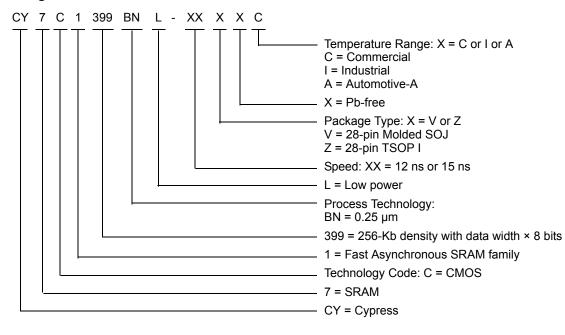
17. The minimum write cycle time for write cycle #3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} . 18. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state. 19. During this period, the I/Os are in the output state and input signals should not be applied.

Truth Table

CE	WE	OE	Input/Output	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output disabled	Active (I _{CC})

Ordering Information

Cypress offers other versions of this type of product in many different configurations and features. The following table contains only the list of parts that are currently available.

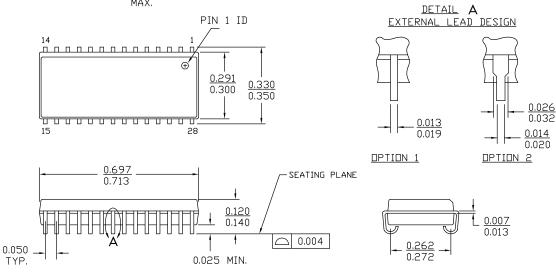

For a complete listing of all options, visit the Cypress website at www.cypress.com and refer to the product summary page at http://www.cypress.com/products or contact your local sales representative.

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives and distributors. To find the office closest to you, visit us at http://www.cypress.com/go/datasheet/offices.

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
12	CY7C1399BN-12VXC	51-85031	28-pin molded SOJ (Pb-free)	Commercial
	CY7C1399BN-12ZXC	51-85071	28-pin TSOP I (Pb-free)	
	CY7C1399BNL-12ZXC		28-pin TSOP I (Pb-free)	
	CY7C1399BN-12VXI	51-85031	28-pin molded SOJ (Pb-free)	Industrial
15	CY7C1399BN-15ZXI	51-85071	28-pin TSOP I (Pb-free)	Industrial
	CY7C1399BN-15VXA	51-85031	28-pin molded SOJ (Pb-free)	Automotive-A

Contact your local sales representative regarding availability of these parts.

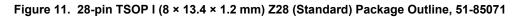
Ordering Code Definitions

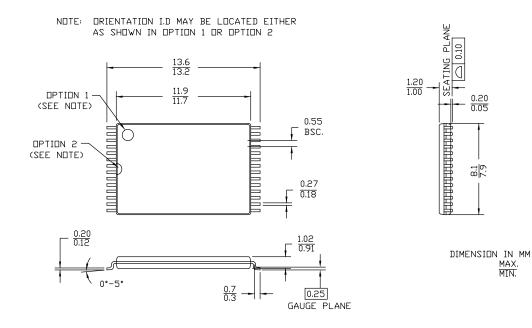


Package Diagrams

Figure 10. 28-pin SOJ (300 Mils) V28.3 (Molded SOJ V21) Package Outline, 51-85031

NDTE :

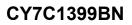

- 1. JEDEC STD REF MOO88
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE
- 3. DIMENSIONS IN INCHES $\underline{\text{MIN.}}_{\text{MAX.}}$



51-85031 *E

Package Diagrams (continued)

51-85071 *I


Acronyms

Acronym	Description
CE	Chip Enable
CMOS	Complementary Metal Oxide Semiconductor
I/O	Input/Output
OE	Output Enable
SRAM	Static Random Access Memory
TSOP	Thin Small Outline Package
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
MHz	megahertz	
μA	microampere	
mA	milliampere	
mV	millivolt	
mW	milliwatt	
ns	nanosecond	
pF	picofarad	
V	volt	
W	watt	

Document History Page

Document Title: CY7C1399BN, 256-Kbit (32 K × 8) Static RAM Document Number: 001-06490					
Revision	ECN	Orig. of Change	Submission Date	Description of Change	
**	423877	NXR	See ECN	New data sheet.	
*A	498575	NXR	See ECN	Added Automotive-A range Removed I _{OS} parameter from DC Electrical Characteristics table Updated Ordering Information table.	
*В	2896382	AJU	03/19/2010	Removed obsolete part numbers from Ordering Information table and updated package diagrams.	
*C	3053362	PRAS	10/08/2010	Removed pruned part numbers CY7C1399BNL-15VXC and CY7C1399BNL-15VXCT. Added Ordering Code Definitions.	
*D	3383869	TAVA	09/26/2011	Added Commercial temperature range under Features section on page 1. Removed reference to AN1064-SRAM System Design Guidelines on page 1. Modified the notes in figures under Read cycle and Write cycle sections. Updated template according to current Cypress standards. Rearranged sections for better clarity. Revised package diagrams. Added Acronyms and Units of measure.	
*E	4121360	VINI	09/12/2013	Updated in new template.	
				Completing Sunset Review.	

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2006-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-06490 Rev. *E

Revised September 12, 2013

Page 16 of 16

All products and company names mentioned in this document may be the trademarks of their respective holders.