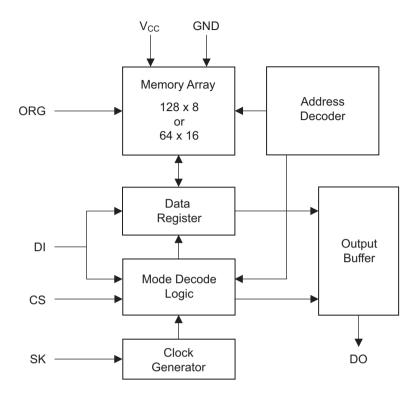

1. Pin Configurations and Pinouts

Table 1-1. Pin Configurations

Pin Name	Function
CS	Chip Select
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
ORG	Internal Organization
SK	Serial Data Clock
V _{CC}	Power Supply

Note: Drawings are not to scale.


2. Absolute Maximum Ratings*

Operating Temperature –55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on Any Pin with Respect to Ground1.0V to +7.0V
Maximum Operating Voltage 6.25V
DC Output Current

*Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability

3. Block Diagram

Figure 3-1. Block Diagram

Note: When the ORG pin is connected to V_{CC} , the x16 organization is selected. When it is connected to ground, the x8 organization is selected.

4. Memory Organization

4.1 Pin Capacitance

Table 4-1. Pin Capacitance⁽¹⁾

Applicable over recommended operating range from $T_A = 25^{\circ}C$, f = 1.0MHz, $V_{CC} = +5.0V$ (unless otherwise noted).

Symbol	Test Conditions	Max	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	V _{IN} = 0V

Note: 1. This parameter is characterized and is not 100% tested.

4.2 DC Characteristics

Table 4-2. DC Characteristics

Applicable over recommended operating range from: $T_A = -40^{\circ}$ C to +125° C, $V_{CC} = +2.5$ V to +5.5V (unless otherwise noted).

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			2.5		5.5	V
V _{CC2}	Supply Voltage			4.5		5.5	V
	Supply Current	V _{CC} = 5.0V	Read at 1.0MHz		0.5	2.0	mA
I _{cc}	Supply Current	V _{CC} = 5.0V	WRITE at 1.0MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 2.5V			6.0	10.0	μΑ
I _{SB2}	Standby Current	V _{CC} = 5.0V			10.0	15.0	μΑ
I _{IL}	Input Leakage	V_{IN} = 0V to V_{CC}	V _{IN} = 0V to V _{CC}			1.0	μΑ
I _{OL}	Output Leakage	V_{IN} = 0V to V_{CC}			0.1	1.0	μΑ
V _{IL1} ⁽¹⁾	Input Low Voltage	2.5V ≤ V _{CC} ≤ 5.5V	0.577 (177) -5.577			0.8	
V _{IH1} ⁽¹⁾	Input High Voltage	2.5V ≤ V _{CC} ≤ 5.5V		2.0		V _{CC} + 1	V
V _{OL1}	Output Low Voltage	2.5V ≤ V _{CC} ≤ 5.5V	I _{OL} = 2.1mA			0.4	V
V _{OH1}	Output High Voltage	2.3V \(\text{\text{CC}}\) \(\text{CC}\)	I _{OH} = -0.4mA	2.4			V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

4.3 AC Characteristics

Table 4-3. AC Characteristics

Applicable over recommended operating range from $T_A = -40^{\circ}\text{C}$ to + 125°C, V_{CC} = As Specified, CL = 1 TTL Gate and 100pF (unless otherwise noted).

Symbol	Parameter	Test Condition		Min	Тур	Max	Units	
£	SK Clask Fraguency	$4.5V \le V_{CC} \le 5.5$	5V	0		2	NAL I-	
f _{SK}	SK Clock Frequency	2.5V ≤ V _{CC} ≤ 5.5	5V	0		1	MHz	
	OK High Time	$4.5V \le V_{CC} \le 5.5$	5V	250				
t _{SKH}	SK High Time	$2.5V \le V_{CC} \le 5.5$	5V	250			ns	
	CK I avy Time	4.5V ≤ V _{CC} ≤ 5.5	5V	250				
t _{SKL}	SK Low Time	2.5V ≤ V _{CC} ≤ 5.5	5V	250			ns	
	Minimum CO I am Time	4.5V ≤ V _{CC} ≤ 5.5	5V	250				
t _{CS}	Minimum CS Low Time	2.5V ≤ V _{CC} ≤ 5.5	5V	250			ns	
	OO Ooters Times	Deletive to OK	$4.5V \le V_{CC} \le 5.5V$	50				
t _{css}	CS Setup Time	Relative to SK	$2.5V \le V_{CC} \le 5.5V$	50			ns	
	DI Catura Tima	Deletive to CK	$4.5V \le V_{CC} \le 5.5V$	100				
t _{DIS}	DI Setup Time	Relative to SK	$2.5V \le V_{CC} \le 5.5V$	100			ns	
t _{CSH}	CS Hold Time	Relative to SK		0			ns	
	Di Hald Tire	Deletive to CK	$4.5V \le V_{CC} \le 5.5V$	100				
t _{DIH}	DI Hold Time	Relative to SK	$2.5V \le V_{CC} \le 5.5V$	100			ns	
	Output Delevite (4)	AC Took	$4.5V \le V_{CC} \le 5.5V$			250		
t _{PD1}	Output Delay to '1'	AC Test	$2.5V \le V_{CC} \le 5.5V$			500	ns	
	Output Delevite (0)	AC Tool	$4.5V \le V_{CC} \le 5.5V$			250		
t _{PD0}	Output Delay to '0'	AC Test	$2.5V \le V_{CC} \le 5.5V$			500	ns	
	CC to Status Valid	AC Test	$4.5V \le V_{CC} \le 5.5V$			250		
t _{SV}	CS to Status Valid	AC Test	$2.5V \le V_{CC} \le 5.5V$			250	ns	
	CC to DO in High impactor	AC Test	$4.5V \le V_{CC} \le 5.5V$			100		
t _{DF}	CS to DO in High-impedance	CS = V _{IL}	$2.5V \le V_{CC} \le 5.5V$			150	ns	
t _{WP}	Write Cycle Time		$2.5V \le V_{CC} \le 5.5V$		3	10	ms	
Endurance ⁽¹⁾	5.0V, 25°C			1,000,000			Write Cycles	

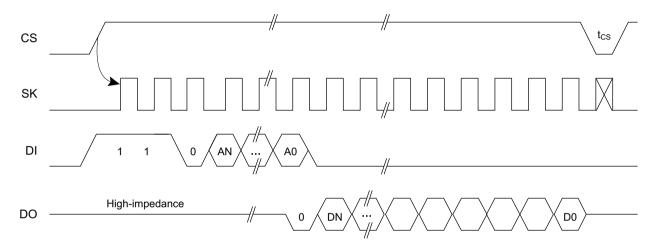
Note: 1. This parameter is ensured by characterization only.

5. Instruction Set for the AT93C46D

Table 5-1. Instruction Set for the AT93C46D

			Add	ress	Data		
Instruction	SB	Opcode	x8	x16	x8	x16	Comments
READ	1	10	$A_6 - A_0$	$A_5 - A_0$			Reads data stored in memory, at specified address.
EWEN	1	00	11XXXXX	11XXXX			Write enable must precede all programming modes.
ERASE	1	11	$A_6 - A_0$	$A_5 - A_0$			Erase memory location $A_n - A_0$.
WRITE	1	01	$A_6 - A_0$	$A_5 - A_0$	D ₇ – D ₀	D ₁₅ – D ₀	Writes memory location $A_n - A_0$.
ERAL	1	00	10XXXXX	10XXXX			Erases all memory locations. Valid only at V_{CC} = 4.5V to 5.5V.
WRAL	1	00	01XXXXX	01XXXX	D ₇ – D ₀	D ₁₅ – D ₀	Writes all memory locations. Valid only at V_{CC} = 4.5V to 5.5V.
EWDS	1	00	00XXXXX	00XXXX			Disables all programming. instructions.

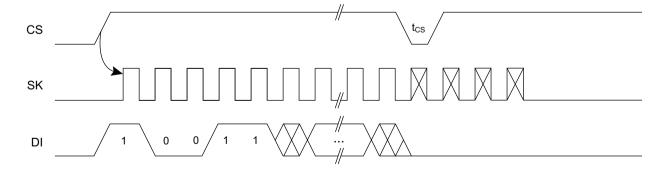
Note: The 'X' in the address field represent don't care values and must be clocked.


6. Functional Description

The AT93C46D is accessed via a simple and versatile 3-wire serial communication interface. The device operation is controlled by seven instructions issued by the host processor. *A valid instruction starts with a rising edge of CS* and consists of a Start bit (Logic 1) followed by the appropriate Opcode and the desired memory Address location.

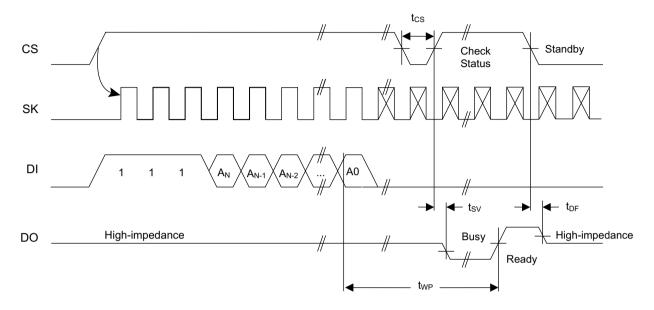
READ: The READ instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the Serial Output (DO) pin. Output data changes are synchronized with the rising edges of Serial Clock (SK).

Note: A dummy bit (Logic 0) precedes the 8- or 16-bit data output string.


Figure 6-1. Read Timing

ERASE/WRITE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when the power is first applied. An EWEN instruction must be executed first before any programming instructions can be carried out.

Note: Once in the EWEN state, programming remains enabled until an EWDS instruction is executed or V_{CC} power is removed from the part.


Figure 6-2. EWEN Timing

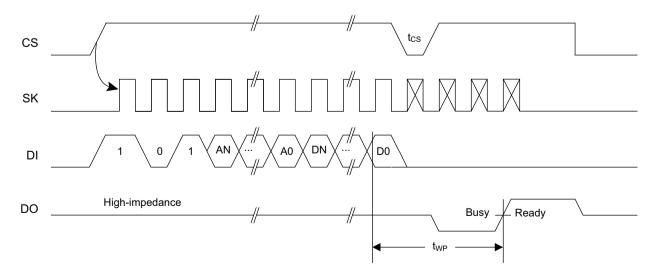
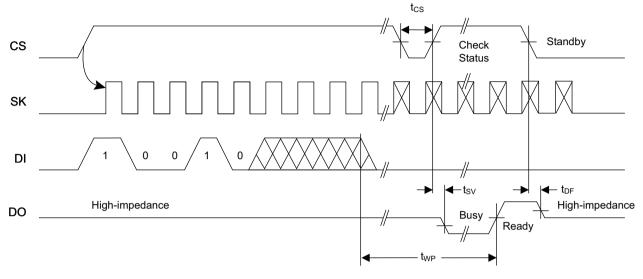
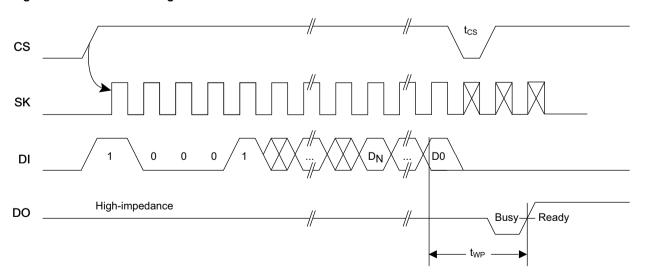

ERASE: The Erase instruction programs all of the bits in the specified memory location to the Logic 1 state. The self-timed erase cycle starts once the ERASE instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). A Logic 1 at the DO pin indicates that the selected memory location has been erased, and the part is ready for another instruction.

Figure 6-3. ERASE Timing

WRITE: The WRITE instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle, t_{WP} , starts after the last bit of data is received at serial data input pin DI. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). A Logic 0 at DO indicates that programming is still in progress. A Logic 1 indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A Ready/Busy status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle, t_{WP} .


Figure 6-4. Write Timing

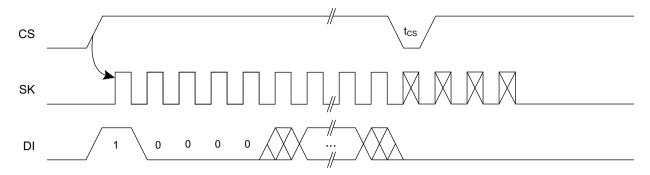
Erase All (ERAL): The ERAL instruction programs every bit in the memory array to the Logic 1 state and is primarily used for testing purposes. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). The ERAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.


Figure 6-5. ERAL Timing⁽¹⁾

Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V.

WRITE ALL (WRAL): The WRAL instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250 ns (t_{CS}). The WRAL instruction is valid only at V_{CC} = 5.0V ± 10%.

Figure 6-6. WRAL Timing⁽¹⁾



Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V.

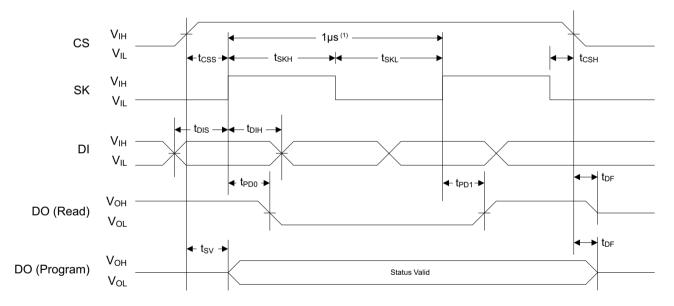

ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturb, the EWDS instruction disables all the programming modes and should be executed after all programming operations. The operation of the READ instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.

Figure 6-7. EWDS Timing

7. Timing Diagrams

Figure 7-1. Synchronous Data Timing

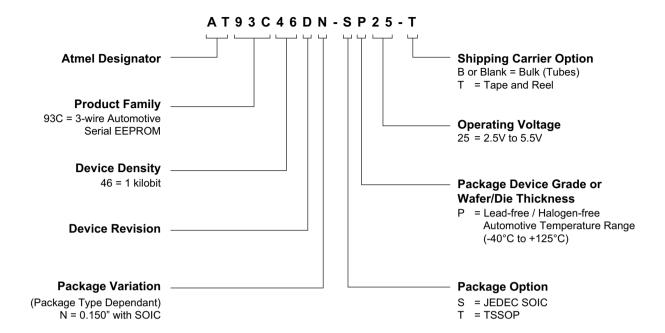
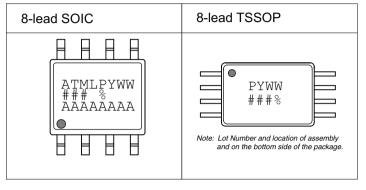

Note: 1. This is the minimum SK period.

Table 7-1. Organization Key for the Timing Diagrams

	AT93C46D (1K)				
I/O	x 8	x 16			
A _N	A ₆	A_5			
D _N	D ₇	D ₁₅			


8. Ordering Code Detail

9. Part Markings

AT93C46D: Automotive Package Marking Information

Note 1: ① designates pin 1

Note 2: Package drawings are not to scale

Catalog Number Truncation							
AT93C46D Truncation Code ###: 46D							
Date Code	es				Voltage	s	
Y = Year		M = Month		WW = Work Week of Assembly	%	= Minimum Voltage	
4: 2014 5: 2015 6: 2016 7: 2017	8: 2018 9: 2019 0: 2020 1: 2021	A: January B: February L: Decemb	y	02: Week 2 04: Week 4 52: Week 52	2:	2.5V min	
Country o	f Assembly		Lot Nu	Lot Number		ead Finish Material	
@ = Country of Assembly		AAAA = Atmel Wafer Lot Number		P:	Automotive/NiPdAu		
Trace Code			Atmel T	runcation			
XX = Trace Code (Atmel Lot Numbers Correspond to Code) Example: AA, AB YZ, ZZ			AT: ATM: ATML:				

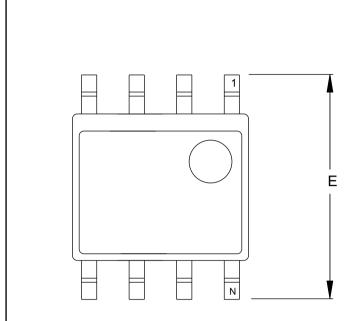
3/13/14

Atmel	TITLE	DRAWING NO.	REV.	
Package Mark Contact: DL-CSO-Assy_eng@atmel.com	93C46DAM, AT93C46D Automotive Package Marking Information	93C46DAM	А	

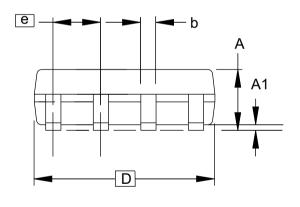
10. Ordering Codes

Atmel Ordering Code	Lead Finish	Package	Voltage	Operation Range
AT93C46DN-SP25-T ⁽¹⁾		8S1		
AT93C46DN-SP25-B ⁽²⁾	Lead-free / Halogen-free	051	2.5V to 5.5V	Automotive Temperature
AT93C46D-TP25-T ⁽¹⁾		8X	2.50 10 5.50	(-40°C to 125°C)
AT93C46D-TP25-B ⁽²⁾		0.7		

Notes: 1. Tape and reel delivery:

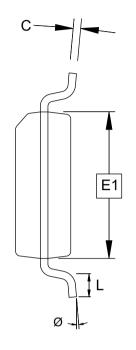

- SOIC = 4,000 per reel.
- TSSOP = 5,000 per reel.
- 2. Bulk delivery in tubes:
 - SOIC and TSSOP = 100 per tube.

Package Type					
8S1	8-lead, 0.15" wide, Plastic Gull Wing Small Outline (JEDEC SOIC)				
8X	8-lead, 4.40mm body, Plastic Thin Shrink Small Outline Package (TSSOP)				



11. Packaging Information

11.1 8S1 — 8-lead JEDEC SOIC


TOP VIEW

SIDE VIEW

Notes: This drawing is for general information only.

Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.

END VIEW

COMMON DIMENSIONS (Unit of Measure = mm)

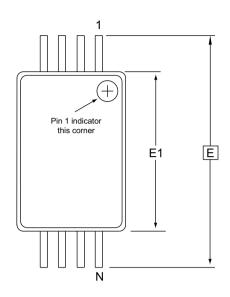
SYMBOL	MIN	NOM	MAX	NOTE
Α	1.35	_	1.75	
A1	0.10	_	0.25	
b	0.31	_	0.51	
С	0.17	_	0.25	
D	4.80	_	5.05	
E1	3.81	_	3.99	
Е	5.79	_	6.20	
е		1.27 BSC	,	
L	0.40	_	1.27	
Ø	0°	_	8°	

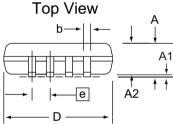
6/22/11

Atmel

Package Drawing Contact: packagedrawings@atmel.com

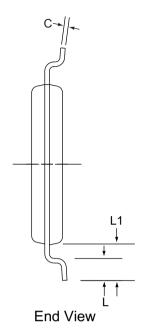
TITLE8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC)


GPC SWB


DRAWING NO. 8S1

NO. REV.

11.2 8X — 8-lead TSSOP



Side View

Notes:

- This drawing is for general information only.
 Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances, datums, etc.
- Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed 0.15mm (0.006in) per side.
- 3. Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25mm (0.010in) per side.
- Dimension b does not include Dambar protrusion.
 Allowable Dambar protrusion shall be 0.08mm total in excess of the b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and adjacent lead is 0.07mm.
- 5. Dimension D and E1 to be determined at Datum Plane H.

COMMON DIMENSIONS (Unit of Measure = mm)

	`			
SYMBOL	MIN	NOM	MAX	NOTE
Α	-	-	1.20	
A1	0.05	1	0.15	
A2	0.80	1.00	1.05	
D	2.90	3.00	3.10	2, 5
E	6.40 BSC			
E1	4.30	4.40	4.50	3, 5
b	0.19	0.25	0.30	4
е	0.65 BSC			
L	0.45	0.60	0.75	
L1	1.00 REF			
С	0.09	-	0.20	

2/27/14

Atmel

Package Drawing Contact: packagedrawings@atmel.com

TITLE
8X, 8-lead 4.4mm Body, Plastic Thin
Shrink Small Outline Package (TSSOP)

GPC	DRAWING NO.	REV.
TNR	8X	Е

12. Revision History

Doc. Rev.	Date	Comments
8674C	10/2014	Update the 8S1 and the 8A2 to 8X packages, template, Atmel logos, and disclaimer page. No change in functional specification.
8674B	10/2009	Updated Lit number and date and removed preliminary status.
8674A	4/2009	Initial document release.

Atmel Corporation

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2014 Atmel Corporation. / Rev.: Atmel-8674C-SEEPROM-AT93C46D-Automotive-Datasheet_102014.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.