

Absolute Maximum Ratings (Over operating free-air temperature range)

Parameter	Min.	Max.	Units
Storage temperature	-65	150	
Ambient Temperature with Power Applied	-40	85	°C
Supply Voltage to Ground Potential (Inputs & V _{CC} Only)	-0.5	7.0	
Supply Voltage to Ground Potential (Outputs & D/O Only)	-0.5	7.0 V	
DC Input Voltage	-0.5	7.0	
DC Output Current	-	120	mA
Power Dissipation	-	500	mW

Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.

DC Electrical Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 5V \pm 5\%$)

Parameters	Description	Test Conditions(1)	Min	Typ (2)	Max	Units	
V _{ANALOG}	Analog Signal Range	0			2.0		
V_{IH}	Input HIGH Voltage	Guaranteed Logic HIGH level 2.0				V	
V_{IL}	Input LOW Voltage	Guaranteed Logic LOW Level	-0.5		0.8	7	
I_{IH}	Input HIGH Current	$V_{CC} = Max., V_{IN} = V_{CC}$		±1			
I_{IL}	Input LOW Current	V _{CC} = Max., V _{IN} = GND			±1		
I _O	Analog Output Leakage Currnet	$0 \le S1$, S2, or $D \le V_{CC}$, Switch OFF			±1	μΑ	
V _{IK}	Clamp Diode Voltage	$V_{CC} = Min., I_{IN} = -18mA$		-0.7	-1.2	V	
Ios	Short Circuit Current(3)	$S1, S2, D = 0V V_{CC}$	100			mA	
V_{H}	Input Hysteresis at Control Pins			150		mV	
Ron	Switch On-Resistance	$V_{CC} = MIN., V_{OUT} = 0.975V \; R_L = 75\Omega, I_{ON} = 13 \; mA$		3	7	Ω	
		V_{CC} = MIN., V_{OUT} = 1.95V R_L = 75 Ω , I_{ON} = 26 mA		7	10	2.2	

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at $V_{\rm CC}$ = 5.0V, TA = 25°C ambient and maximum loading.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Measured by the voltage drop between S1, S2, and D I/O pins at indicated current through the switch. On-Resistance is determined by the lower of the voltages on the S1, S2, and D I/O pins.

Dynamic Characteristics (Over the Operating Range, $T_A = -40$ °C to +85°C, $V_{CC} = 5V \pm 5\%$)

Parameters	Description	Test Conditions ⁽¹⁾	Min	Тур	Max	Units
T _{ON}	Turn On Time	$R_L = 70\Omega$, $C_L = 20$ PF, See Fig. 2		2.5	5	
T _{OFF}	Turn Off Time	$R_L = 70\Omega$, $C_L = 20$ PF, See Fig. 2	$R_L = 70\Omega$, $C_L = 20$ PF, See Fig. 2		5	ns
BW ⁽¹⁾	-3dB Bandwidth	$R_L = 150\Omega$, See Fig. 3	150			MHz
X _{TALK}	Crosstalk	RIN = $10Ω$; R _L = $150Ω$, $10MHz$, See Fig. 3 -58			dB	
D_{G}	Differential Gain	$R_L = 150\Omega$, $f = 3.58$ MHz, See Fig. 1		0.64		%
D _P	Differential Phase	$R_L = 150\Omega$, $f = 3.58$ MHz, See Fig. 1		0.27		Deg.
$C_{IN}^{(1)}$	Input/Enable Capacitance	$V_{IN} = 0V, f = 1 MHz$			6	
C _{OFF} ⁽¹⁾	Capacitance, Switch Off	$V_{IN} = 0V, f = 1 MHz$			6	pF
C _{ON} ⁽¹⁾	Capacitance, Switch On	$V_{IN} = 0V, f = 1 MHz$			20	
O _{IRR}	Off Isolation	$R_L = 150\Omega$, 10MHz, See Fig 3 -38			dB	

Notes:

Power Supply Characteristics

Parameters	Description	Test Conditions ⁽¹⁾		Min	Typ (2)	Max	Units
I_{CC}	Quiescent Power Supply Current	V _{CC} = Max.	IN = GND or V _{CC}		0.1	3.0	μΑ
ΔI_{CC}	Supply Current per Input @ TTL HIGH	V _{CC} = Max.	$IN = 3.4V^{(3)}$			2.5	mA
I _{CCD}	Supply Current per Input per MHz ⁽⁴⁾	V_{CC} = Max., S1, S2 and D Pins Open \overline{EN} = GND Control Input Toggling 50% Duty Cycle				0.25	mA/ MHz

Notes:

- 1. For Max. or Min. conditions, use appropriate value specified under Electrical Characteristics for the applicable device.
- 2. Typical values are at V_{CC} = 5.0V, +25°C ambient and maximum loading.
- 3. Per TTL driven input (V_{IN} = 3.4V, control inputs only); S1, S2, and D pins do not contribute to Icc.
- 4. This current applies to the control inputs only and represent the current required to switch internal capacitance at the specified frequency. The S1, S2, and D I/O pins generate no significant AC or DC currents as they transition. This parameter is not tested, but is guaranteed by design.

^{1.} This parameter is determined by device characterization but is not production tested.

Definitions

Parameters	Description
T _{ON}	Resistance between source and drain with switch in the ON state.
Io	Output leakage current measured at S1, S2, and D with the switch OFF.
V _{IN}	Digital voltage at the IN pin that selects between S1 and S2 analog inputs.
$V_{\rm EN}$	A voltage that ENABLES the chip.
C _{IN}	Capacitance at the digital inputs.
C _{OFF}	Capacitance at analog I/O (S1, S2, D) with switch OFF.
Con	Capacitance at analog I/O (S1, S2, D) with switch ON.
V _{IH}	Minimum input voltage for logic HIGH.
V _{IL}	Minimum input voltage for logic LOW.
I _{IH} (I _{IL)}	Input current of the digital input.
I _{OS}	Minimum short circuit current for S1, S2 and D.
ton	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned ON. The peak analog voltage is 0.714V.
t _{OFF}	Propagation delay measured between 50% of the digital input to 90% of the analog output when switch is turned OFF. The peak analog voltage is 0.714V.
Bw	Frequency response of the switch in the ON state measured at 3dB down.
X _{TALK}	Is an unwanted signal coupled from channel to channel. Measured in $-dB$. $X_{TALK} = 20$ LOG V_{OUT}/V_{IN} . This is non-adjacent crosstalk.
D_{G}	Differential gain is the difference measurement between two bias levels, for instance analog input signals of 0V to 0.714V.
D_P	Differential phase is the difference measurement between two bias levels, for instance analog input signals of 0V to 0.714V.
O _{IRR}	Off isolation is the resistance (measured in -dB) between the input and output with the switch off (NO).

Test Circuits

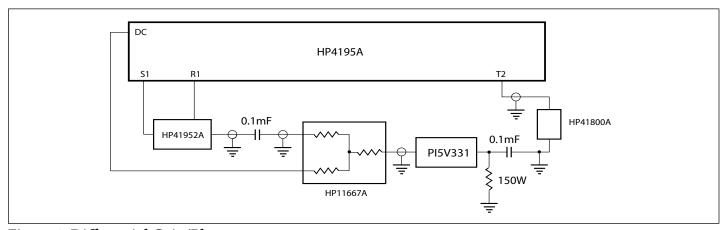


Figure 1. Differential Gain/Phase

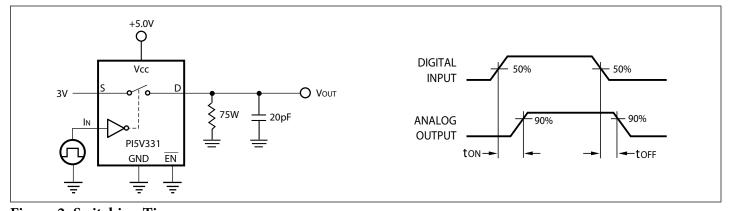


Figure 2. Switching Time

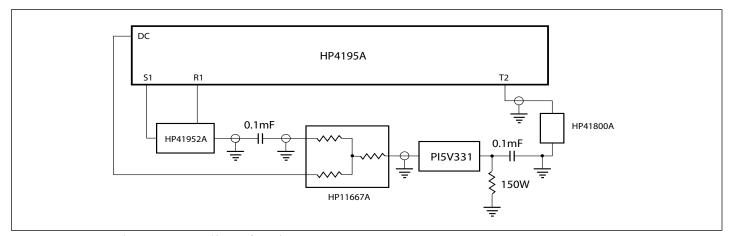
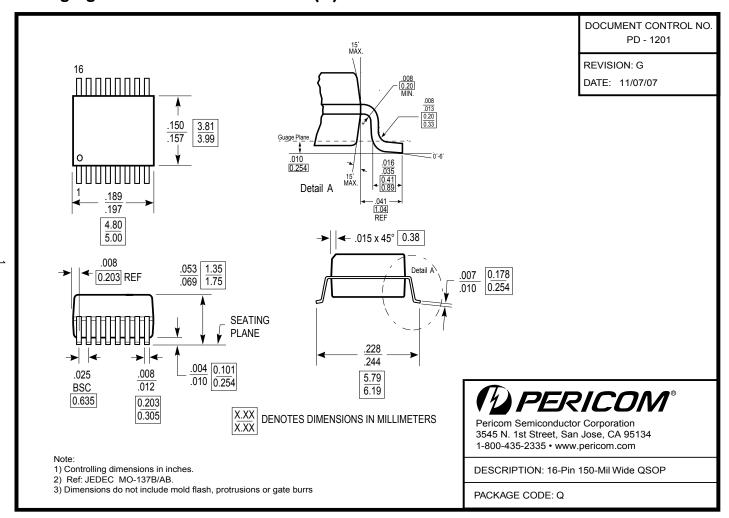



Figure 3. Gain/Phase, Crosstalk, Off-Isolation

Packaging Mechanical: 16-Pin QSOP (Q)

Ordering Information

Ordering Code	Package Code	Package Type
PI5V331QE	Q	Pb-free & Green, 16-pin 150-mil wide QSOP

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. "E" denotes Pb-free and Green
- 3. Adding an "X" at the end of the ordering code denotes tape and reel packaging