Absolute Maximum Ratings(Note 1)

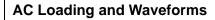
	-
Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (I _{IK})	
$@V_{IN} < -0.5V$	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 6V$, $V_{CC} = GND$	+20 mA
DC Output Current (I _{OUT})	± 50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	\pm 50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

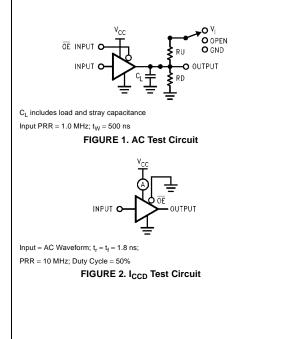
Recommended Operating Conditions (Note 2)								
Supply Voltage Operating (V_{CC})	1.65V to 5.5V							
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V							
Input Voltage (V _{IN})	0V to 5.5V							
Output Voltage (V _{OUT})								
Active State	0V to V _{CC}							
3-STATE	0V to 5.5V							
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$							
Input Rise and Fall Time (t _r , t _f)								
$V_{CC} = 1.8V$, 2.5V $\pm 0.2V$	0 ns/V to 20 ns/V							
$V_{CC}=3.3V\pm0.3V$	0 ns/V to 10 ns/V							
$V_{CC}=5.0V\pm0.5V$	0 ns/V to 5 ns/V							
Thermal Resistance (θ_{JA})								
SOT23-5	300°C/W							
SC70-5	425°C/W							
Note 1: Absolute maximum ratings are DC values	peyond which the device							

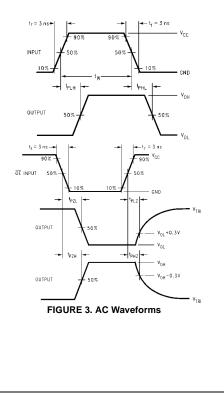
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

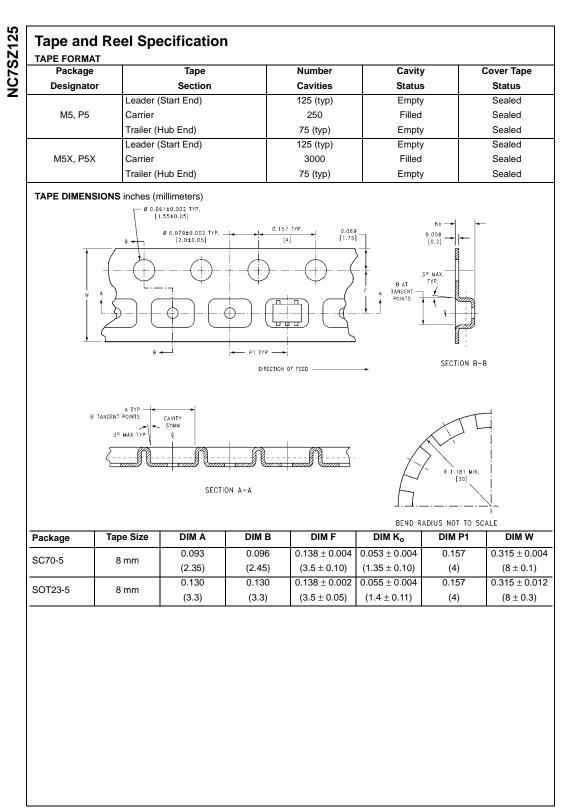
DC Electrical Characteristics

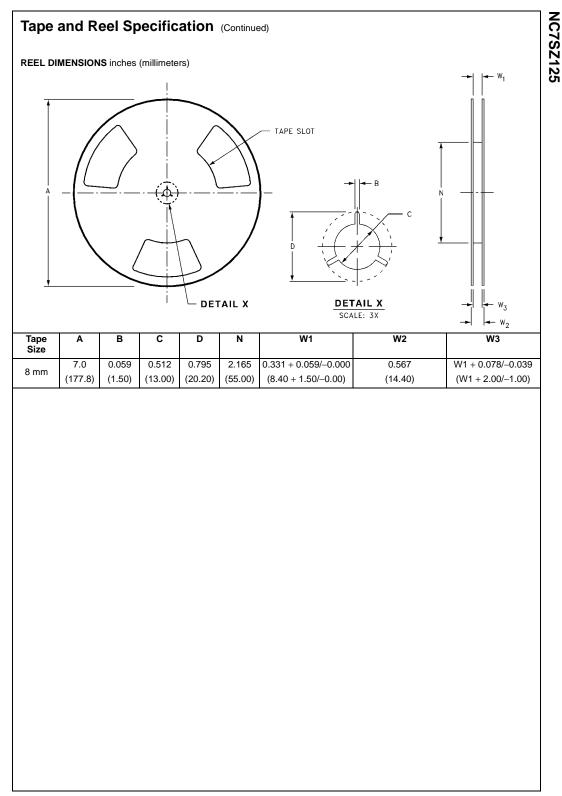

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_{A}=-40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions		
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Input Voltage	1.65 to 1.95			$0.25 V_{CC}$		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2		V	$V_{IN}=V_{IH}$	$I_{OH}=-100~\mu A$
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.0			
		1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1	V	$V_{IN}=V_{IL}$	$I_{OL}=100\;\mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μA	$0 \le V_{IN} \le 1$	
I _{OZ}	3-STATE Output Leakage	1.65 to 5.5			±1		±10	μΑ	$V_{IN} = V_{IH}$ $0 \le V_O \le 5$	
I _{OFF}	Power Off Leakage Current	0.0			1		10	μA	V _{IN} or V _{OI}	
Icc	Quiescent Supply Current	1.65 to 5.5			2.0		20	μA	V _{IN} = 5.5\	

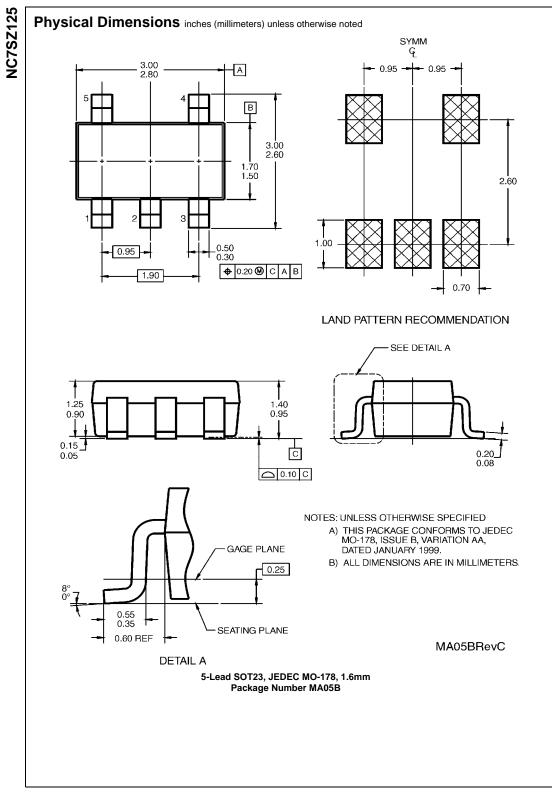

www.fairchildsemi.com

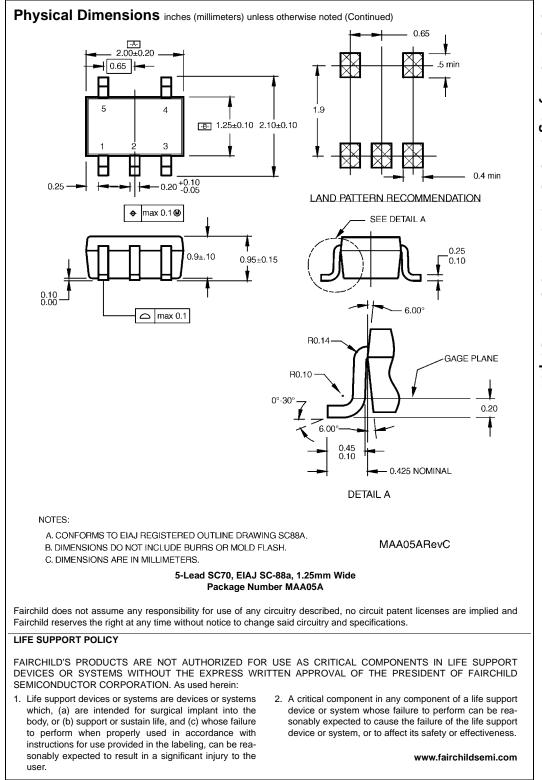

2

Symbol	Parameter	V _{CC}	V_{CC} $T_A = +25^{\circ}C$ $T_A = -40$				C to +85°C	Units	Conditions	Fig. No.
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	FIG. NO.
t _{PLH}	Propagation Delay	1.65	2.0	6.4	13.2	2.0	13.8			
t _{PHL}		1.8	2.0	5.3	11.0	2.0	11.5		C _L = 15 pF,	-
		2.5 ± 0.2	0.8	3.4	7.5	0.8	8.0	ns	$R_D = 1 M\Omega$,	Figures 1, 3
		3.3 ± 0.3	0.5	2.5	5.2	0.5	5.5		$S_1 = OPEN$., -
		5.0 ± 0.5	0.5	2.1	4.5	0.5	4.8			
t _{PLH}	Propagation Delay	$\textbf{3.3}\pm\textbf{0.3}$	1.5	3.2	5.7	1.5	6.0	ns	$C_L=50~\text{pF},~\text{R}_D=500\Omega,$	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.6	5.0	0.8	5.3	115	$S_1 = OPEN$	1, 3
t _{PZL}	Output Enable Time	1.65	2.0	8.4	15.0	2.0	15.6		$C_L=50 \text{ pF, RD}=500\Omega$	
t _{PZH}		1.8	2.0	7.0	12.5	2.0	13		$RU = 500\Omega$	-
		2.5 ± 0.2	1.5	4.6	8.5	1.5	9	ns	$S_1 = GND$ for t_{PZH}	Figures 1.3
		3.3 ± 0.3	1.5	3.5	6.2	1.5	6.5		$S_1 = V_{IN}$ for t_{PZL}	., -
		5.0 ± 0.5	0.8	2.8	5.5	0.8	5.8		$V_{IN} = 2 \times V_{CC}$	
t _{PLZ}	Output Disable Time	1.65	2.0	6.5	13.2	2.0	14.5		$C_L = 50 \text{ pF}, \text{ RD} = 500 \Omega$	
t _{PHZ}		1.8	2.0	5.4	11	2.0	12		$RU = 500\Omega$	-
		2.5 ± 0.2	1.5	3.5	8	1.5	8.5	ns	$S_1 = GND$ for t_{PHZ}	Figures 1.3
		3.3 ± 0.3	1.0	2.8	5.7	1.0	6		$S_1 = V_{IN}$ for t_{PLZ}	, -
		5.0 ± 0.5	0.5	2.1	4.7	0.5	5.0		$V_{IN} = 2 \times V_{CC}$	
C _{IN}	Input Capacitance	0		4				pF		
C _{OUT}	Output Capacitance	0		8				Pi		
C _{PD}	Power Dissipation	3.3		17				рF	(Note 3)	Figure 2
	Capacitance	5.0		24				P	(11010-0)	i igui e z


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC}\text{static}).$






www.fairchildsemi.com

www.fairchildsemi.com

NC7SZ125 TinyLogic™ UHS Buffer with 3-STATE Output

www.fairchildsemi.com