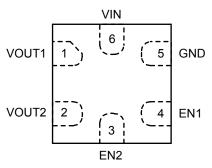

Block Diagrams

MIC5380 Block Diagram


Ordering Information

Lead Free Part Number ⁽¹⁾	Manufacturing Part Number	Marking Code ⁽²⁾	Voltage1	Voltage2	Junction Temp. Range	Package ⁽³⁾
MIC5380-3.3/3.3YFT	MIC5380-SSYFT	S2	3.3V	3.3V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5380-3.0/3.0YFT	MIC5380-PPYFT	2P	3.0V	3.0V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5380-2.85/1.8YFT	MIC5380-NGYFT	NG	2.85V	1.8V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5380-2.8/1.8YFT	MIC5380-MGYFT	GM	2.8V	1.8V	-40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5380-2.8/1.2YFT	MIC5380-M4YFT	4M	2.8V	1.2V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5380-2.7/2.7YFT	MIC5380-LLYFT	2L	2.7V	2.7V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5380-2.6/2.0YFT	MIC5380-KHYFT	KH	2.6V	2.0V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5380-1.8/1.2YFT	MIC5380-G4YFT	4G	1.8V	1.2V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5381-3.3/3.3YFT *	MIC5381-SSYFT	MK	3.3V	3.3V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5381-3.0/3.0YFT *	MIC5381-PPYFT	MF	3.0V	3.0V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5381-2.8/1.8YFT *	MIC5381-MGYFT	MG	2.8V	1.8V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5381-2.8/1.2YFT *	MIC5381-M4YFT	M4	2.8V	1.2V	–40° to +125°C	6-Pin 1x1 Thin MLF®
MIC5381-1.8/1.2YFT *	MIC5381-G4YFT	G4	1.8V	1.2V	–40° to +125°C	6-Pin 1x1 Thin MLF®

Note:

- 1. Other voltages available. Contact Micrel for details.
- 2. Thin MLF[®] Pin 1 Identifier = ▲.
- 3. Thin MLF® is a GREEN RoHS compliant package. Lead finish is NiPdAu. Mold compound is Halogen Free.
- * MIC5381 offers Auto-Discharge function.

Pin Configuration

6-Pin 1mm x 1mm Thin MLF $^{\otimes}$ (FT) (Top View)

Pin Description

Pin Number	Pin Name	Pin Function
1	VOUT1	Regulator Output – LDO1.
2	VOUT2	Regulator Output – LDO2.
3	EN2	Enable Input (regulator 2). Active High Input. Logic High = On; Logic Low = Off; Do not leave floating.
4	EN1	Enable Input (regulator 1). Active High Input. Logic High = On; Logic Low = Off; Do not leave floating.
5	GND	Ground.
6	VIN	Supply Input.

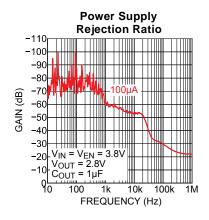
Absolute Maximum Ratings⁽¹⁾

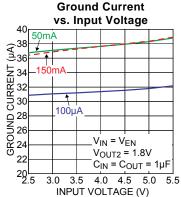
Supply Voltage (V _{IN})	–0.3V to +6V
Enable Voltage (V _{EN1} , V _{EN2})	0.3V to V _{IN}
Power Dissipation (P _D)	. Internally Limited ⁽³⁾
Lead Temperature (soldering, 10sec.)	260°C
Junction Temperature (T _J)	40°C to +125°C
Storage Temperature (T _s) ESD Rating ⁽⁴⁾	65°C to +150°C
ESD Rating ⁽⁴⁾	2kV

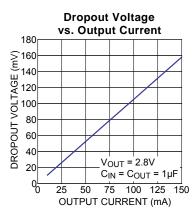
Operating Ratings⁽²⁾

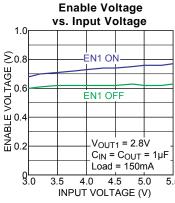
Supply Voltage (V _{IN})	+2.5V to 5.5V
Enable Voltage (V _{EN1} , V _{EN2})	0.3V to V _{IN}
Junction Temperature (T _J)	40°C to +125°C
Junction Thermal Resistance	
1mm x 1mm Thin MLF-6 (θ_{JA})	150°C/W

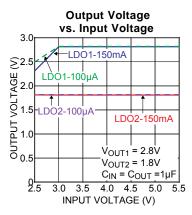
Electrical Characteristics⁽⁵⁾

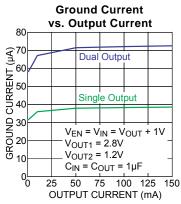

 $V_{IN} = V_{EN1} = V_{EN2} = V_{OUT} + 1V; \ higher of the two regulator outputs; \ I_{OUTLDO1} = I_{OUTLDO2} = 100 \mu A; \ C_{OUT1} = C_{OUT2} = 1 \mu F; \ T_J = 25 ^{\circ}C, \ \textbf{bold} \ values indicate -40 ^{\circ}C \ to +125 ^{\circ}C, \ unless noted.$

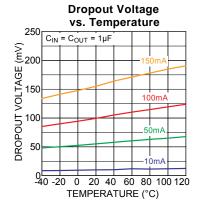

Parameter	Condition	Min	Тур	Max	Units
Output Voltage Accuracy	Variation from nominal V _{OUT}		±1		%
	Variation from nominal V _{OUT} ; –40°C to +85°C	-3.0		+3.0	%
Line Regulation	V_{IN} = V_{OUT} +1V to 5.5V, I_{OUT} = 100 μ A		0.02	0.3	%/V
Load Regulation	I _{OUT} = 100μA to 150mA		0.3	1	%
Dropout Voltage	I _{OUT} = 50mA		55	110	mV
	I _{OUT} = 150mA		155	310	mV
Ground Pin Current	V_{EN1} = High; V_{EN2} = Low; I_{OUT} = 0mA		32	45	μA
	V_{EN1} = Low; V_{EN2} = High; I_{OUT} = 0mA		32	45	μΑ
	$V_{EN1} = V_{EN2} = High; I_{OUT1} = I_{OUT2} = 0mA$		59	85	μA
Ground Pin Current in Shutdown	$V_{EN1} = V_{EN2} = 0V$		0.05	1	μA
Ripple Rejection	f = 1kHz; C _{OUT} = 1μF		60		dB
Current Limit	V _{OUT} = 0V	200	325	550	mA
Output Voltage Noise	C _{OUT} = 1µF, 10Hz to 100kHz		200		μV _{RMS}
Auto-Discharge NFET Resistance	MIC5381 Only; V _{EN1} = V _{EN2} = 0V; V _{IN} = 3.6V		30		Ω
Enable Inputs (EN1/EN2)	·				
Enable Input Voltage	Logic Low			0.2	V
	Logic High	1.2			V
Enable Input Current	V _{IL} ≤ 0.2V		0.01	1	μΑ
	V _{IH} ≥ 1.2V		0.01	1	μΑ
Turn-on Time	C _{OUT} = 1µF		50	125	μs

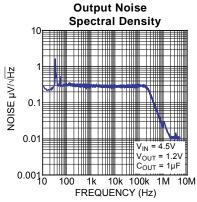

Notes:

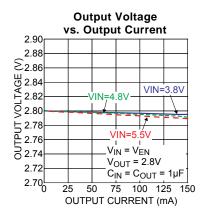

- 1. Exceeding the absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- 3. The maximum allowable power dissipation of any T_A (ambient temperature) is P_{D(max)} = (T_{J(max)} T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown.
- 4. Devices are ESD sensitive. Handling precautions recommended. Human body model, $1.5k\Omega$ in series with 100pF.
- 5. Specification for packaged product only.

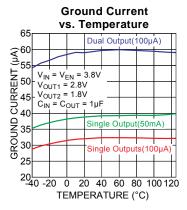

Typical Characteristics

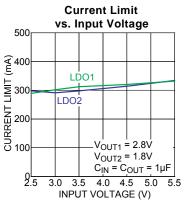


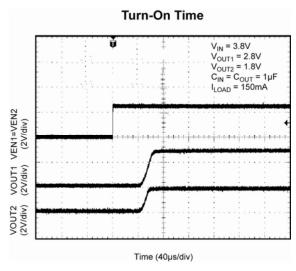


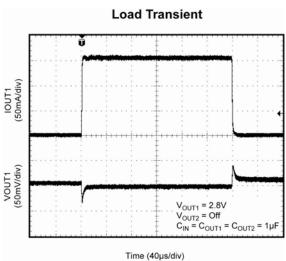


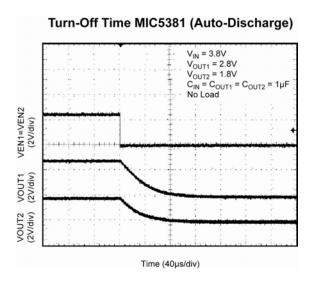


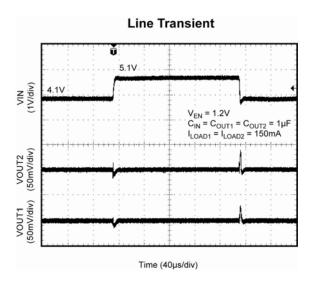


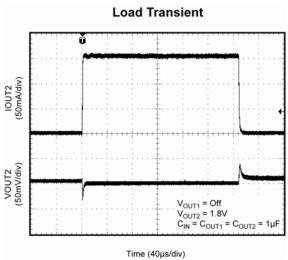











Functional Characteristics

Application Information

MIC5380/1 is a dual 150mA LDO in a small 1mm x 1mm Thin MLF package. The MIC5381 includes an auto-discharge circuit for each of the LDO outputs that is activated when the output is disabled. The MIC5380/1 regulator is fully protected from damage due to fault conditions through linear current limiting and thermal shutdown.

Input Capacitor

The MIC5380/1 is a high-performance, high bandwidth device. An input capacitor of 1µF capacitor is required from the input-to-ground to provide stability. Low-ESR ceramic capacitors provide optimal performance at a minimum of space. Additional high-frequency capacitors, such as small-valued NPO dielectric-type capacitors, help filter out high-frequency noise and are good practice in any RF-based circuit. X5R or X7R dielectrics are recommended for the input capacitor. Y5V dielectrics lose most of their capacitance over temperature and are therefore, not recommended.

Output Capacitor

The MIC5380/1 requires an output capacitor of $1\mu F$ or greater to maintain stability. The design is optimized for use with low-ESR ceramic chip capacitors. High ESR capacitors may cause high frequency oscillation. The output capacitor can be increased, but performance has been optimized for a $1\mu F$ ceramic output capacitor and does not improve significantly with larger capacitance.

X7R/X5R dielectric-type ceramic capacitors recommended because of temperature their performance. X7R-type capacitors change capacitance by 15% over their operating temperature range and are the most stable type of ceramic capacitors. Z5U and Y5V dielectric capacitors change value by as much as 50% and 60%, respectively, over their operating temperature ranges. To use a ceramic chip capacitor with Y5V dielectric, the value must be much higher than an X7R ceramic capacitor to ensure the same minimum capacitance over the equivalent operating temperature range.

No-Load Stability

Unlike many other voltage regulators, the MIC5380/1 will remain stable and in regulation with no load. This is especially important in CMOS RAM keep-alive applications.

Enable/Shutdown

The MIC5380/1 comes with two active-high enable pins that allow each regulator to be disabled independently. Forcing the enable pin low disables the regulator and sends it into a "zero" off-mode-current state. In this state, current consumed by the regulator goes nearly to zero. When disabled the MIC5381 switches a 30Ω (typical) load on the regulator output to discharge the external capacitor.

Forcing the enable pin high enables the output voltage. The active-high enable pin uses CMOS technology and the enable pin cannot be left floating; a floating enable pin may cause an indeterminate state on the output.

Thermal Considerations

The MIC5380/1 is designed to provide 150mA of continuous current for both outputs in a very small package. Maximum ambient operating temperature can be calculated based upon the output current and the voltage drop across the part. For example, if the input voltage is 3.6V, and the output voltage 3.0V for $V_{\text{OUT}1}$, 3.0V for $V_{\text{OUT}2}$ and output current = 150mA, then the actual power dissipation of the regulator circuit can be calculated using the equation:

 P_D = (V_{IN} – V_{OUT1}) I_{OUT1} + (V_{IN} – V_{OUT2}) I_{OUT2} + V_{IN} I_{GND} Because this device is CMOS and the ground current is typically <100µA over the load range, the power dissipation contributed by the ground current is < 1% and can be ignored for this calculation.

$$P_D = (3.6V - 3.0V) \times 150mA + (3.6V - 3.0V) \times 150mA$$

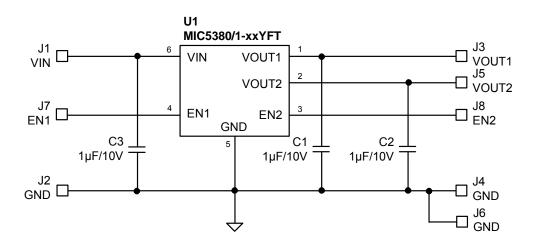
 $P_D = 0.18W$

To determine the maximum ambient operating temperature of the package, use the junction-to-ambient thermal resistance of the device and the following basic equation:

$$P_{D(MAX)} = \left(\frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}\right)$$

 $T_{J(max)}$ = 125°C, and the maximum junction temperature of the die, θ_{JA} , thermal resistance = 150°C/W.

Substituting P_D for $P_{D(max)}$ and solving for the ambient operating temperature will give the maximum operating conditions for the regulator circuit. The junction-to-ambient thermal resistance for the minimum footprint is 150°C/W .


The maximum power dissipation must not be exceeded for proper operation.

For example, when operating the MIC5380-PPYFT at an input voltage of 3.6V and 150mA loads at each output with a minimum footprint layout, the maximum ambient operating temperature T_A can be determined as follows:

$$0.18W = (125^{\circ}C - T_A)/(150^{\circ}C/W)$$

 $T_A = 98^{\circ}C$

Therefore, a 3.0V/3.0V application, with 150mA at each output current, can accept an ambient operating temperature of 98°C in a 1mm x 1mm MLF® package. For a full discussion of heat sinking and thermal effects on voltage regulators, refer to the "Regulator Thermals" section of *Micrel's Designing with Low-Dropout Voltage Regulators* handbook. This information can be found on Micrel's website at:

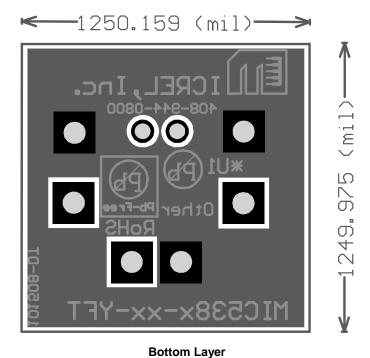
http://www.micrel.com/_PDF/other/LDOBk_ds.pdf

Bill of Materials

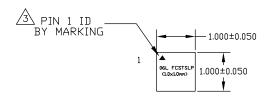
Item	Part Number	Manufacturer	Description	Qty.
	GRM155R61A105KE19D	Murata ⁽¹⁾	Capacitor, 1µF Ceramic, 10V, X5R, Size 0402	
C1, C2, C3	C1005X5R1A105K	TDK ⁽²⁾	Capacitor, 1µF Ceramic, 10V, X5R, Size 0402	3
	0402ZD105KAT2A	AVX ⁽³⁾	Capacitor, 1µF Ceramic, 10V, X5R, Size 0402	
U1	MIC5380/1-xxYFT	Micrel ⁽⁴⁾	Dual, 150mA LDO, Size 1mm x 1mm Thin MLF®	1

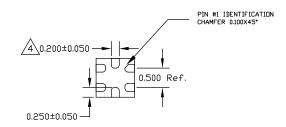

Notes:

Murata: www.murata.com
 TDK: www.tdk.com


3. AVX: avx.com

4. Micrel, Inc.: www.micrel.com

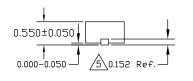

PCB Layout Recommendations


Top Layer

Package Information

TOP VIEW

BOTTOM VIEW


NOTES:

- ALL DIMENSIONS ARE IN MILLIMETERS, ANGLES ARE IN DEGREES.
 N IS THE TOTAL NUMBER OF TERMINALS.
- MAX PACKAGE WARPAGE IS 0.05mm, MAX ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.

DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP.

APPLIED FOR EXPOSED PAD AND TERMINALS.

SIDE VIEW

6-Pin 1mm x 1mm Thin MLF® (FT)

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2008 Micrel, Incorporated.

November 2008 12 M9999-110608-A