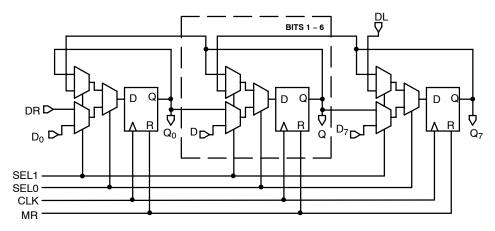


* All V_{CC} and V_{CCO} pins are tied together on the die.

Warning: All V_{CC}, V_{CCO}, and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 28-Lead Pinout


Table 1. PIN DESCRIPTION

PIN	FUNCTION
$\begin{array}{l} D_0 - D_7 \\ DL, DR \\ SEL0, SEL1 \\ CLK \\ Q_0 - Q_7 \\ MR \\ V_{CC}, V_{CC0} \\ V_{EE} \\ NC \end{array}$	ECL Parallel Data Inputs ECL Serial Data Inputs ECL Mode Select In Inputs ECL Clock ECL Data Outputs ECL Master Reset Positive Supply* Negative Supply No Connect

*From V_{CC} pin to each V_{CCO} pin is an internal 100 Ω resistor.

Table 2. FUNCTION TABLE

SEL0	SEL1	FUNCTION
L L H H	⊥ ⊥ ⊥ ⊥	Load Shift Right (D _n to D _{n + 1}) Shift Left (D _n to D _{n - 1}) Hold

Figure 2. Logic Diagram

Table 3. EXPANDED FUNCTION TABLE

Function	DL	DR	SEL0	SEL1	MR	CLK	Q0	Q1	Q2	Q3	Q4	Q5	Q6	Q7
Load	Х	Х	L	L	L	Z	D0	D1	D2	D3	D4	D5	D6	D7
Shift Right	X	L	L	H	L	Z	L	Q0	Q1	Q2	Q3	Q4	Q5	Q6
	X	H	L	H	L	Z	H	L	Q0	Q1	Q2	Q3	Q4	Q5
Shift Left	L	x	H	L	L	Z	L	Q0	Q1	Q2	Q3	Q4	Q5	L
	H	x	H	L	L	Z	Q0	Q1	Q2	Q3	Q4	Q5	L	H
Hold	X	X	H	H	L	Z	Q0	Q1	Q2	Q3	Q4	Q5	L	H
	X	X	H	H	L	Z	Q0	Q1	Q2	Q3	Q4	Q5	L	H
Reset	Х	Х	Х	Х	Н	Х	L	L	L	L	L	L	L	L

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		8	V
V_{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-8	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} \leq V_{CC}$ $V_{I} \geq V_{EE}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			0 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	PLCC-28 PLCC-28	63.5 43.5	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	PLCC-28	22 to 26	°C/W
V_{EE}	PECL Operating Range NECL Operating Range			4.2 to 5.7 -5.7 to -4.2	V V
T _{sol}	Wave Solder Pb Pb-Free			265 265	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Table 5. 10E SERIES PECL DC CHARACTERISTICS V_{CCx} = 5.0 V; V_{EE} = 0.0 V (Note 1)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		131	181		131	181		131	181	mA
V _{OH}	Output HIGH Voltage (Note 2)	3980	4070	4160	4020	4105	4190	4090	4185	4280	mV
V _{OL}	Output LOW Voltage (Note 2)	3050	3210	3370	3050	3210	3370	3050	3227	3405	mV
VIH	Input HIGH Voltage	3830	3995	4160	3870	4030	4190	3940	4110	4280	mV
V _{IL}	Input LOW Voltage	3050	3285	3520	3050	3285	3520	3050	3302	3555	mV
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.3	0.2		μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V.

2. Outputs are terminated through a 50 Ω resistor to \overline{V}_{CC} – 2.0 V.

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		131	181		131	181		131	181	mA
V _{OH}	Output HIGH Voltage (Note 4)	-1020	-930	-840	-980	-895	-810	-910	-815	-720	mV
V _{OL}	Output LOW Voltage (Note 4)	-1950	-1790	-1630	-1950	-1790	-1630	-1950	-1773	-1595	mV
V _{IH}	Input HIGH Voltage	-1170	-1005	-840	-1130	-970	-810	-1060	-890	-720	mV
V _{IL}	Input LOW Voltage	-1950	-1715	-1480	-1950	-1715	-1480	-1950	-1698	-1445	mV
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.065		0.3	0.2		μA

Table 6. 10E SERIES NECL DC CHARACTERISTICS $V_{CCx} = 0.0 V$; $V_{EE} = -5.0 V$ (Note 3)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.06 V.

4. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

Table 7. 100E SERIES PECL DC CHARACTERISTICS $V_{CCx} = 5.0 \text{ V}$; $V_{EE} = 0.0 \text{ V}$ (Note 5)

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		131	181		131	181		151	181	mA
V _{OH}	Output HIGH Voltage (Note 6)	3975	4050	4120	3975	4050	4120	3975	4050	4120	mV
V _{OL}	Output LOW Voltage (Note 6)	3190	3295	3380	3190	3255	3380	3190	3260	3380	mV
V _{IH}	Input HIGH Voltage	3835	3975	4120	3835	3975	4120	3835	3975	4120	mV
V _{IL}	Input LOW Voltage	3190	3355	3525	3190	3355	3525	3190	3355	3525	mV
I _{IH}	Input HIGH Current			150			150			150	μA
I _{IL}	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μA

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

5. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

6. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

			0°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		131	181		131	181		151	181	mA
V _{OH}	Output HIGH Voltage (Note 8)	-1025	-950	-880	-1025	-950	-880	-1025	-950	-880	mV
V _{OL}	Output LOW Voltage (Note 8)	-1810	-1705	-1620	-1810	-1745	-1620	-1810	-1740	-1620	mV
V _{IH}	Input HIGH Voltage	-1165	-1025	-880	-1165	-1025	-880	-1165	-880	-1025	mV
V _{IL}	Input LOW Voltage	-1810	-1645	-1475	-1810	-1645	-1475	-1810	-1475	-1645	mV
I _{IH}	Input HIGH Current			150			150			150	μA
IIL	Input LOW Current	0.5	0.3		0.5	0.25		0.5	0.2		μA

Table 8. 100E SERIES NECL DC CHARACTERISTICS $V_{CCx} = 0.0 \text{ V}$; $V_{EE} = -5.0 \text{ V}$ (Note 7)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

7. Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary –0.46 V / +0.8 V.

8. Outputs are terminated through a 50 Ω resistor to V_{CC} – 2.0 V.

				0°C			25°C			85°C		
Symbol	Characteristic	ľ	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{SHIFT}	Max. Shift Frequency		700	900		700	900		700	900		MHz
t _{PLH} t PHL		Clk MR	625 600	750 725	975 975	625 600	750 725	975 975	625 600	750 725	975 975	ps
t _s		D ELO EL1	175 350 300	25 200 150		175 350 300	25 200 150		175 350 300	25 200 150		ps
t _h		D ELO EL1	200 100 100	- 25 - 200 -150		200 100 100	- 25 - 200 -150		200 100 100	- 25 - 200 -150		ps
t _{RR}	Reset Recovery Time		900	700		900	700		900	700		ps
t _{PW}	Minimum Pulse Width Clk, I	MR	400			400			400			ps
t _{SKEW}	Within-Device Skew (Note 10)			60			60			60		ps
t _{JITTER}	Random Clock Jitter (RMS)			< 1			< 1			< 1		ps
t _r t _f	Rise/Fall Times (20 - 80%)		300	525	800	300	525	800	300	525	800	ps

Table 9. AC CHARACTERISTICS	$V_{CCx} = 5.0 \text{ V}; V_{EE} = 0.0 \text{ V}$	/ or $V_{CCx} = 0.0 V$; $V_{EE} = -5.0 V$ (Note 9)
-----------------------------	---	---

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

10 Series: V_{EE} can vary -0.46 V / +0.06 V. 100 Series: V_{EE} can vary -0.46 V / +0.8 V.

-

10. Within-device skew is defined as identical transitions on similar paths through a device.

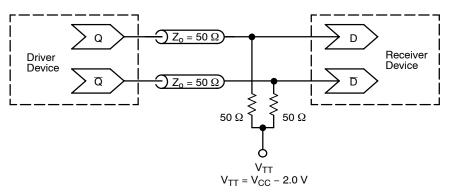
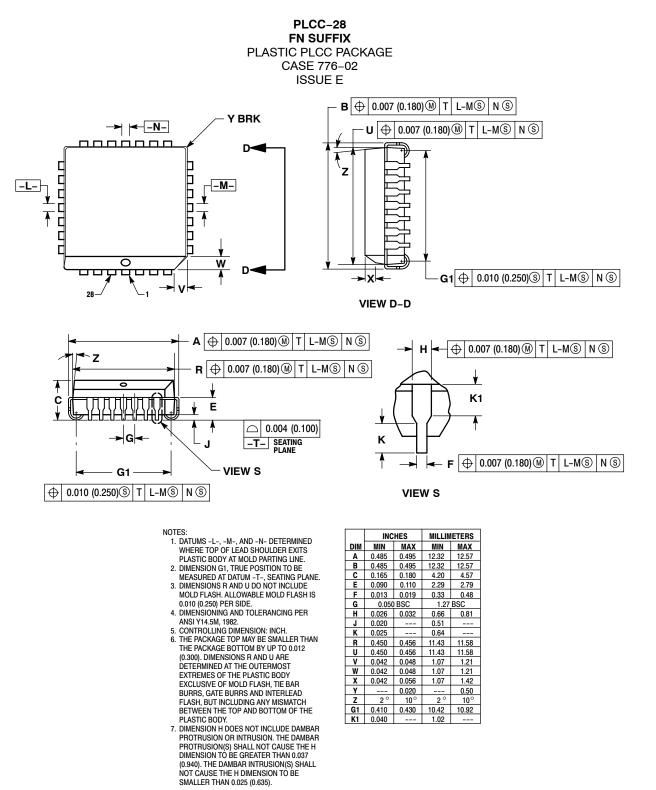


Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION


Device	Package	Shipping [†]
MC10E141FN	PLCC-28	37 Units / Rail
MC10E141FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC10E141FNR2	PLCC-28	500 / Tape & Reel
MC10E141FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel
MC100E141FN	PLCC-28	37 Units / Rail
MC100E141FNG	PLCC-28 (Pb-Free)	37 Units / Rail
MC100E141FNR2	PLCC-28	500 / Tape & Reel
MC100E141FNR2G	PLCC-28 (Pb-Free)	500 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	_	Designing with PECL (ECL at +5.0 V)
AN1503/D	_	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	_	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and IIII are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personse and regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative