Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits

ABSOLUTE MAXIMUM RATINGS

Terminal Voltage (with respect to GND)		Continous Power Dissipation
VCC	0.3V to +6.0V	3-Pin SC70 (derate 2.9mV
Open-Drain RESET, MR		4-Pin SC70 (derate 3.1mW
RESET-IN, Push-Pull RESET		Operating Temperature Ran
and RESET	0.3V to (V _{CC} + 0.3V)	Junction Temperature
Input/Output Current (all pins)	20mÁ	Storage Temperature Range

Continous Power Dissipation (T _A = +70°C)	
3-Pin SC70 (derate 2.9mW/°C above +70°C)	235mW
4-Pin SC70 (derate 3.1mW/°C above +70°C)	245mW
Operating Temperature Range40°C	C to +85°C
Junction Temperature	+150°C
Storage Temperature Range65°C	to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +0.55V \text{ to } +3.6V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

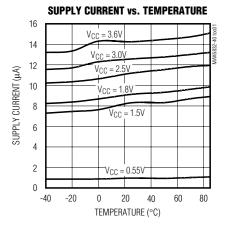
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
	Vcc	T _A = -40°C to +85°C MAX6832/MAX6835/MAX6838 MAX6834/MAX6837/MAX6840	0.55		3.6		
Supply Voltage Range		T _A = -40°C to +85°C MAX6833/MAX6836/MAX6839	0.85		3.6	V	
		T _A = 0°C to +85°C MAX6833/MAX6836/MAX6839	0.75		3.6		
		V _{CC} = 1.2V, no load, reset not asserted		7.5	13		
Supply Current	Icc	V _{CC} = 1.8V, no load, reset not asserted		9	16	μΑ	
		V _{CC} = 3.6V, no load, reset not asserted		16	25		
	V _{TH}	W	1.620	1.665	1.710	V	
		V	1.530	1.575	1.620		
Donat Thursday			1.350	1.388	1.425		
Reset Threshold		Н	1.275	1.313	1.350		
		G	1.080	1.110	1.140		
		F (Note 2)	1.020	1.050	1.080		
DECET IN The state of	Vector	$1.1V \le V_{CC} \le 3.3V$, 0°C to +85°C	-2.5%	444	+2.5%	\/	
RESET-IN Threshold	VRSTIN	$1.1V \le V_{CC} \le 3.3V$, $-40^{\circ}C$ to $+85^{\circ}C$	-3.0%	444	+3.0%	mV	
RESET-IN Leakage Current	IRSTIN		-25		+25	nA	
Reset Threshold Hysteresis	V _{HYS}			0.75		%V _{TH}	
V _{CC} or RESET-IN to Reset Delay		V _{CC} falling, step signal from (V _{TH} + 100mV) to (V _{TH} - 100mV)		60		μs	
	t _{RP}	D0		0.07		ms	
		D1	1	1.5	2		
Reset Active Timeout Period		D2	20	30	40		
		D3	140	210	280		
		D4	1120	1680	2240		

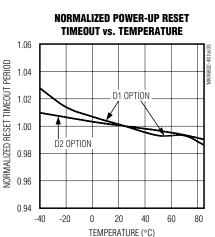
Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits

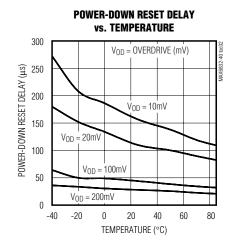
ELECTRICAL CHARACTERISTICS (continued)

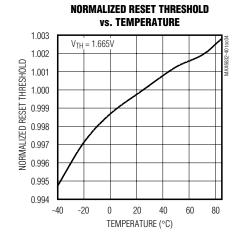
 $(V_{CC} = +0.55V \text{ to } +3.6V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Propagation Delay (D0 only)	tp	V _{CC} rising, step signal from (V _{TH} - 100mV)		70		μs	
Startup Time (D0 only)		V _{CC} rising from 0 to 1.1V (t _R < 1μs)		150		μs	
MR Input Voltage	V _{IL}			0.3 x V _{CC}		V	
with input voitage	VIH	0.7 x V _{CC}				V	
MR Minimum Input Pulse Width		MR driven from V _{CC} to 0	2			μs	
MR Glitch Rejection		MR driven from V _{CC} to 0		100		ns	
MR to Reset Delay		MR driven from V _{CC} to 0		500		ns	
MR Pullup Resistance To V _{CC}			14	20	26	kΩ	
On an Dunin DECET Output		V _{CC} ≥ 0.55V, I _{SINK} =15µA, reset asserted		0.15			
Open-Drain RESET Output Voltage	VoL	V _{CC} ≥ 1.0V, I _{SINK} = 80µA, reset asserted			0.15	V	
Voltago		V _{CC} ≥ 1.5V, I _{SINK} = 200µA, reset asserted			0.2		
Open-Drain RESET Output Leakage Current	ILKG	V _{CC} > V _{TH} , reset not asserted			1.0	μΑ	
Push-Pull RESET Output Voltage	VoL	V _{CC} ≥ 0.55V, I _{SINK} = 15µA, reset asserted		0	.2 x V _C C		
		V _{CC} ≥ 1.0V, I _{SINK} = 80µA, reset asserted		0	.2 x V _{CC}		
		V _{CC} ≥ 1.5V, I _{SINK} = 200µA, reset asserted		0	.2 x V _{CC}	C V	
	Vон	V _{CC} ≥ 1.1V, I _{SOURCE} = 50μA, reset not asserted	0.8 x V _C C	;			
		V _{CC} ≥1.5V, I _{SOURCE} = 150µA, reset asserted	0.8 x V _C C)			
	Vон	$V_{CC} \ge 0.75$ V, $I_{SOURCE} = 10$ μA, reset asserted (Note 2) $0.8 \times V_{CC}$ $V_{CC} \ge 0.85$ V, $I_{SOURCE} = 10$ μA, reset asserted 0.8 × V _{CC})			
B							
Push-Pull RESET Output Voltage		V _{CC} ≥ 1.0V, I _{SOURCE} = 50µA, reset asserted	0.8 x V _C C	V _{CC} V		V	
		V _{CC} ≥ 1.5V, I _{SOURCE} = 150µA, reset asserted 0.8 x V _{CC}					
	\/a:	V _{CC} ≥ 1.1V, I _{SINK} = 80µA, reset not asserted		0	.2 x V _{CC}		
	VOL	V _{CC} ≥ 1.5V, I _{SINK} = 200µA, reset not asserted		0	.2 x V _{CC}		


Note 1: 100% production tested at +25°C. Over temperature limits are guaranteed by design.


Note 2: Temperature range is from 0°C to +85°C.

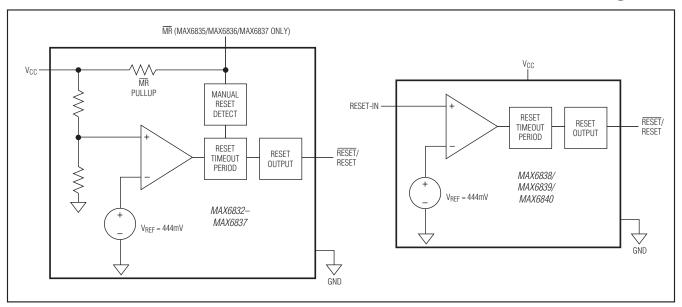

Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits


Typical Operating Characteristics

 $(V_{CC} = \text{full range and } T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}\text{C}$).

Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits

Pin Description—MAX6832-MAX6837


PIN						
MAX6833 SC70-3	MAX6832/ MAX6834 SC70-3	MAX6836 SC70-4	MAX6835/ MAX6837 SC70-4	NAME	FUNCTION	
1	1	1	1	GND	Ground	
_	2	_	2	RESET	Reset Output, Open-Drain or Push-Pull, Active-Low. RESET changes from HIGH to LOW when V _{CC} drops below the selected reset threshold or MR is pulled low. RESET remains LOW for the reset timeout period after V _{CC} exceeds the device reset threshold and MR is released high.	
2	_	2		RESET	Reset Output, Push-Pull, Active-High. RESET changes from LOW to HIGH when the V_{CC} input drops below the selected reset threshold or \overline{MR} is pulled low. RESET remains HIGH for the reset timeout period after V_{CC} exceeds the device reset threshold and \overline{MR} is released high.	
_	_	3	3	MR	Active-Low Manual Reset Input. Internal $20 k\Omega$ pullup to V_{CC} . Pull LOW to force a reset. Reset remains active as long as $\overline{\text{MR}}$ is LOW and for the reset timeout period after $\overline{\text{MR}}$ goes HIGH. Leave unconnected or connect to V_{CC} if unused.	
3	3	4	4	V _C C	Supply Voltage and Monitored Supply	

Pin Description—MAX6838/MAX6839/MAX6840

Pi	IN			
MAX6839 SC70-4	MAX6838/ MAX6840 SC70-4	NAME	FUNCTION	
1	1	RESET-IN	Adjustable Reset Threshold Input. High-impedance input for reset comparator. Connect this pin to an external resistive-divider network to set the reset threshold voltage; the typical threshold is 444mV. Reset is asserted when RESET-IN is below the threshold (VCC is not monitored).	
2	2	Vcc	Supply Voltage (1.1V to 3.3V)	
3	3	GND	Ground	
4	_	RESET	Reset Output, Push-Pull, Active-High. RESET changes from LOW to HIGH when the RESET-IN input drops below the typical reset threshold (444mV). RESET remains HIGH for the reset timeout period after RESET-IN exceeds the reset threshold.	
_	4	RESET	Reset Output, Open-Drain or Push-Pull, Active-Low. RESET changes from HIGH to LOW when RESET-IN drops below the typical reset threshold (444mV). RESET remains LOW for the reset timeout period after RESET-IN exceeds the reset threshold.	

Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits

Functional Diagrams

Detailed Description

Reset Output

A microprocessor's (µP's) reset input starts the µP in a known state. The MAX6832-MAX6840 assert a reset to prevent code-execution errors during power-up, powerdown, or brownout conditions. They also assert a reset signal whenever the V_{CC} supply voltage falls below a preset threshold (MAX6832-MAX6837) or RESET-IN falls below the adjustable threshold (MAX6838/ MAX6839/MAX6840), keeping reset asserted for a fixed timeout delay (Table 2) after VCC or RESET-IN has risen above the reset threshold. The MAX6832/MAX6835/ MAX6838 use a push-pull active-low output, the MAX6833/MAX6836/MAX6839 have a push-pull activehigh output, and the MAX6834/MAX6837/MAX6840 have an open-drain active-low output stage. Connect a pullup resistor on the MAX6834/MAX6837/MAX6840's RESET output to any supply between 0 and 6V.

Manual Reset Input

Many μP -based systems require manual reset capability, allowing the operator, a test technician, or external logic circuitry to initiate a reset. Reset remains asserted while \overline{MR} is low, and for a fixed timeout delay after \overline{MR} returns high. This input has an internal $20k\Omega$ pullup resistor, so it can be left open if it is not used. \overline{MR} can be driven with CMOS logic level, or with open-drain/collector outputs. To create a manual reset function, connect a normally open momentary switch from \overline{MR} to ground; external debounce circuitry is not required. If

MR is driven from long cables or if the device is used in a noisy environment, connecting a 0.1µF capacitor from MR to ground provides additional noise immunity.

RESET-IN Information

The MAX6838/MAX6839/MAX6840 feature a RESET-IN input for monitoring supply voltages down to 0.44V. An external resistive-divider network can be used to set voltage monitoring thresholds as shown in Figure 1. As the monitored voltage falls, the voltage at RESET-IN decreases and asserts a reset when it falls below the RESET-IN threshold (VRSTIN). The low-leakage current

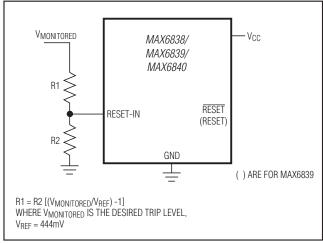


Figure 1. Setting the Adjustable Threshold Externally

Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits

at RESET-IN allows for relatively large-value resistors to be used, which reduce power consumption. For example, for a 0.6V monitored trip level, if R2 = $200k\Omega$, then R1 = $70.3k\Omega$. Note that the minimum VCC of 1.1V is required to guarantee the RESET-IN threshold accuracy (see *Electrical Characteristics* table).

Applications Information

Negative-Going Vcc Transients

In addition to issuing a reset to the μP during power-up, power-down, and brownout conditions, the MAX6832–MAX6840 are relatively immune to short-duration negative-going VCC transients (glitches).

Figure 2 shows typical transient duration vs. reset comparator overdrive, for which the MAX6832–MAX6840 do **not** generate a reset pulse. The graph was generated using a negative-going pulse applied to VCC, starting 0.1V above the actual reset threshold and ending below it by the magnitude indicated (reset comparator overdrive). The graph indicates the maximum pulse width a negative-going VCC transient can have without causing a reset pulse. As the magnitude of the transient increases (goes farther below the reset threshold), the maximum allowable pulse width decreases. A 0.1µF bypass capacitor mounted as close as possible to the VCC pin provides additional transient immunity.

Ensuring a Valid Reset Output Down to VCC = 0

When V_{CC} falls below 0.55V, the MAX6832/MAX6835/MAX6838 push-pull RESET output no longer sinks current—it becomes an open circuit. Therefore, high-impedance CMOS logic inputs connected to RESET

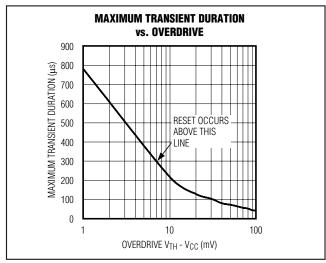


Figure 2. Maximum Transient Duration Without Causing a Reset Pulse vs. Reset Comparator Overdrive

can drift to undetermined voltages. This presents no problem in most applications since most μP and other circuitry are inoperative with VCC lower than 0.55V. However, in applications where RESET must be valid down to 0, adding a pulldown resistor to RESET causes any stray leakage currents to flow to ground, holding RESET low (Figure 3). R3's value is not critical; $100 \text{k}\Omega$ is large enough not to load RESET and small enough to pull RESET to ground.

A 100k Ω pullup resistor to V_{CC} is also recommended for the MAX6833/MAX6836/MAX6839 if RESET is required to remain valid for V_{CC} < 0.85V.

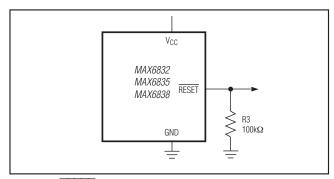


Figure 3. RESET Valid to VCC = Ground Circuit

Interfacing to µPs with Bidirectional Reset Pins

Since the $\overline{\text{RESET}}$ output on the MAX6834/MAX6837/MAX6840 is open-drain, these devices interface easily with μPs that have bidirectional reset pins. Connecting the μP supervisor's $\overline{\text{RESET}}$ output directly to the μP 's $\overline{\text{RESET}}$ pin with a single pullup resistor allows either device to assert a reset (Figure 4).

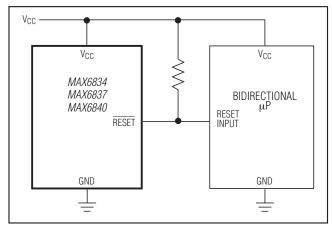


Figure 4. Interfacing to µPs with Bidirectional Reset I/O

Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits

Using The MAX6834/MAX6837/MAX6840 Open-Drain RESET Output with Multiple Supplies

Generally, the pullup connected to the MAX6834/MAX6837/MAX6840 will connect to the supply voltage that is being monitored at the IC's V_{CC} pin. However, some systems may use the open-drain output to level-shift from the monitored supply to reset circuitry powered by some other supply (Figure 5). Note that as the MAX6834/MAX6837/MAX6840's V_{CC} decreases, so does the IC's ability to sink current at RESET. Also, with any pullup, RESET will be pulled high as V_{CC} declines toward 0. The voltage where this occurs depends on the pullup resistor value and the voltage to which it is connected.

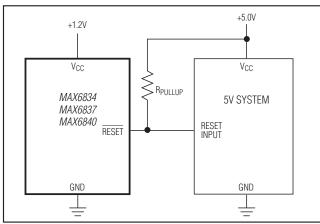


Figure 5. Using The MAX6834/MAX6837/MAX6840 Open-Drain RESET Output with Multiple Supplies

_Chip Information

TRANSISTOR COUNT: 681
PROCESS: BICMOS

Selector Guide

Table 1. Threshold Suffix Guide

SUFFIX	RESET THRESHOLD (V)
W	1.665
V	1.575
I	1.388
Н	1.313
G	1.110
F	1.050

Table 2. Active Timeout Period Guide

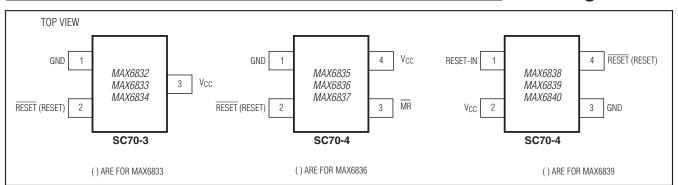
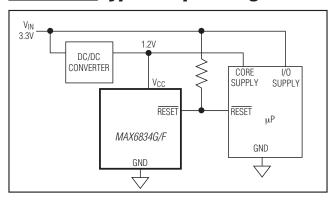

SUFFIX	TYPICAL RESET ACTIVE TIMEOUT PERIOD (ms)			
D0	0.07			
D1	1.5			
D2	30			
D3	210			
D4	1680			

Table 3. Standard Versions

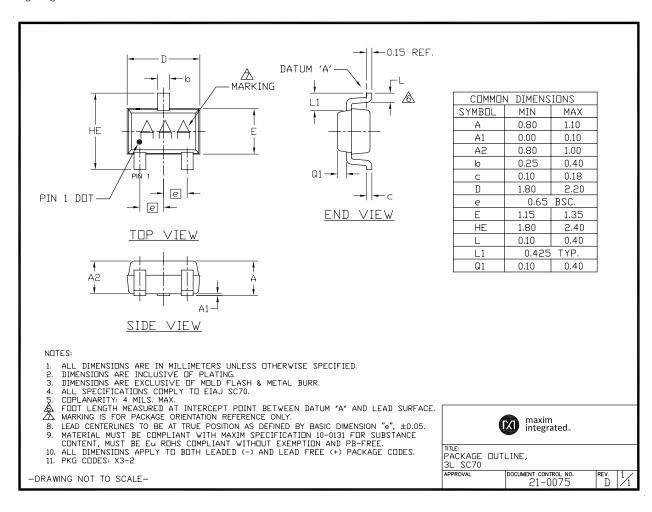

DEVICE	TOP MARK
MAX6832VXRD0	AIQ
MAX6832VXRD3	AIR
MAX6832HXRD0	AIS
MAX6832HXRD3	AIT
MAX6832FXRD0	AIU
MAX6832FXRD3	AIV
MAX6833VXRD0	AHJ
MAX6833VXRD3	AIW
MAX6833HXRD0	AIX
MAX6833HXRD3	AIY
MAX6833FXRD0	AIZ
MAX6833FXRD3	AJA
MAX6834VXRD0	AJB
MAX6834VXRD3	AJC
MAX6834HXRD0	AJD
MAX6834HXRD3	AJE
MAX6834FXRD0	AJF
MAX6834FXRD3	AJG
MAX6835VXSD0	AEX

Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits

Pin Configurations

Typical Operating Circuit

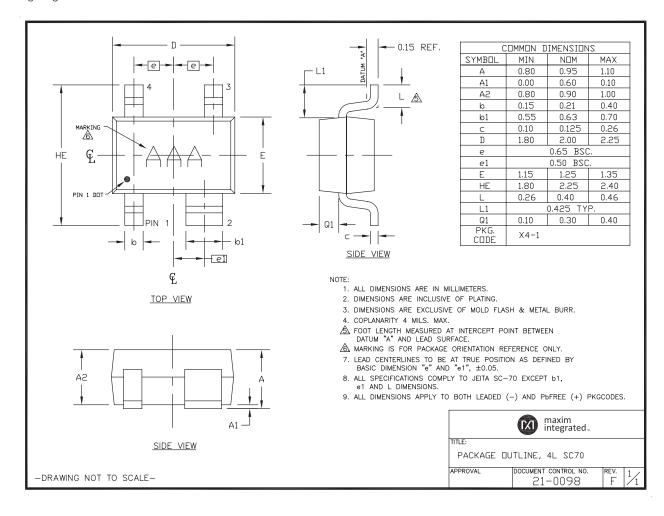
Selector Guide (continued)


Table 3. Standard Versions (continued)

DEVICE	TOP MARK
MAX6835VXSD3	AFF
MAX6835HXSD0	AFG
MAX6835HXSD3	AFH
MAX6835FXSD0	AFI
MAX6835FXSD3	AFJ
MAX6836VXSD0	AFK
MAX6836VXSD3	AFL
MAX6836HXSD0	AFM
MAX6836HXSD3	AFN
MAX6836FXSD0	AFO
MAX6836FXSD3	AFP
MAX6837VXSD0	AFQ
MAX6837VXSD3	AFR
MAX6837HXSD0	AFS
MAX6837HXSD3	AFT
MAX6837FXSD0	AFU
MAX6837FXSD3	AFC
MAX6838XSD0	AFW
MAX6838XSD3	AFV
MAX6839XSD0	AFX
MAX6839XSD3	AEZ
MAX6840XSD0	AFY
MAX6840XSD3	AFZ

Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits

Package Information


For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Ultra-Low-Voltage SC70 Voltage Detectors and µP Reset Circuits

Package Information (continued)

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000

11