ABSOLUTE MAXIMUM RATINGS

V+ to GND	0.3V to +44V
V- to GND	44V to +0.3V
V+ to V	0.3V to +44V
All Other Pins to GND (Note 1) (V0.3V) to (V++0.3V)
Continuous Current COM, NO, NC (MAX	
Continuous Current COM, NO, NC (MAX	
Continuous Current IN	±30mA
Peak Current COM, NO, NC	
MAX4660 (pulsed at 1ms, 10% duty	cycle)±200mA
MAX4659 (pulsed at 1ms, 10% duty	cycle)±150mA
Continuous Power Dissipation ($T_A = +70$	°C)
8-Pin µMAX-EP (derate 10.3mW/°C a	bove +70°C)
MAX4660	

8-Pin μMAX (derate 4.50mW/°C above +70°C)	
MAX4659	/
8-Pin SO-EP (derate 18.9mW/°C above +70°C)	
MAX46601509mW	/
8-Pin SO (derate 5.88mW/°C above +70°C)	
MAX4659471mW	/
Operating Temperature Ranges	
MAX4659/MAX466040°C to +85°C)
Junction Temperature+150°C)
Storage Temperature Range65°C to +150°C)
Lead Temperature (soldering, 10s)+300°C)

Note 1: Signals on NO, NC, COM, or IN exceeding V+ or V- are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Dual Supplies

 $(V + = +15V, V - = -15V, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.) (Notes 2, 6)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	ТҮР	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			V-		V+	V
On-Resistance	R _{ON}	I _{COM} = 50mA;	+25°C		18	25	Ω
On-nesistance	HON	$V_{NO} \text{ or } V_{NC} = \pm 10 V$	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			30	
On-Resistance Matching	ΔRon	I _{COM} = 50mA;	+25°C		0.4	1.2	Ω
Between Channels	ΔhON	$V_{NO} \text{ or } V_{NC} = \pm 10V$	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			1.5	52
On-Resistance Flatness		I _{COM} = 50mA;	+25°C		0.5	1.5	1.5 2 Ω
(Note 3)	RFLAT (ON)	$V_{NO} \text{ or } V_{NC} = -5V, 0, +5V$	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			2	
NO or NC Off-Leakage	I _{NO(OFF)} or	V _{COM} = -14.5V, +14.5V; V _{NO}	+25°C	-1	0.01	1	nA
Current (Note 4)	INC(OFF)		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	-10		10	
COM On-Leakage	$\begin{array}{c} V_{COM} = +14.5V, -14.5V; \\ V_{NO} \text{ or } V_{NC} = +14.5V, \\ -14.5V, \text{ or floating} \end{array}$	+25°C	-2	0.02	2	nA	
Current (Note 4)		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	-20		20		
DYNAMIC CHARACTERISTICS							
Transition Time tTRANS	•	$V_{NO} \text{ or } V_{NC} = 10V;$	+25°C		85	150	
	$C_L = 35pF;$ Figure 3	$R_L = 300\Omega$, $C_L = 35pF$; Figure 3	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			200	ns
Break-Before-Make Delay	Break-Before-Make Delay t_{BBM} $R_L = 300\Omega$,	$V_{NO} \text{ or } V_{NC} = 10V;$ B ₁ = 3000	+25°C	10	20		ns
		$C_L = 35 pF$, Figure 3	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	5			

ELECTRICAL CHARACTERISTICS—Dual Supplies (continued)

 $(V + = +15V, V - = -15V, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Notes 2, 6)}$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	ТҮР	MAX	UNITS
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF, Figure 4	+25°C		1.5		рС
-3dB Bandwidth	BW		+25°C		225		MHz
Off-Isolation (Note 5)	VISO	$f = 1MHz, R_L = 50\Omega,$ Figure 5	+25°C		-70		dB
Total Harmonic Distortion	THD	f = 20Hz to 20kHz, $V_{N_{-}}$ = 5Vp-p, R_L = 600 Ω	+25°C		0.005		%
Crosstalk	VCROSS	$R_L = 50\Omega$, $C_L = 5pF$, f = 1MHz, Figure 6	+25°C		-76		dB
NO or NC Off-Capacitance	C _{NO(OFF)} , C _{NC(OFF)}	f = 1MHz, Figure 7	+25°C		6		pF
COM On-Capacitance	C _{COM(ON)}	f = 1MHz, Figure 8	+25°C		25		pF
DIGITAL I/O							
Input Logic High	VIH		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	2.4			V
Input Logic Low	VIL		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			0.8	V
Input Leakage Current	l _{IN}	$V_{IN} = 0.8V \text{ or } 2.4V$	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	-1		1	μΑ
POWER SUPPLY							
Power-Supply Range			T _{MIN} to T _{MAX}	±4.5		±20	V
Positive Supply Current	1+	V _{IN} = 0 or 5V, V _N = 3V, I _{SWITCH} = 100mA, MAX4660;	+25°C		135	200	μA
	17	ISWITCH = 50mA, MAX4659	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			300	μΛ
No potivo Que plu Queront		$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		$SWITCH = 100 \text{mA}, +25^{\circ}\text{C} 33$	30	50	
Negative Supply Current	-		T _{MIN} to T _{MAX}			75	- μΑ
Ground Current		$V_{IN} = 0 \text{ or } 5V, V_{N_{-}} = 3V,$ ISWITCH = 100mA,	+25°C		100	175	
Ground Current	Ground Current IGND	MAX4660; I _{SWITCH} = 50mA, MAX4659	T_{MIN} to T_{MAX}			225	μA

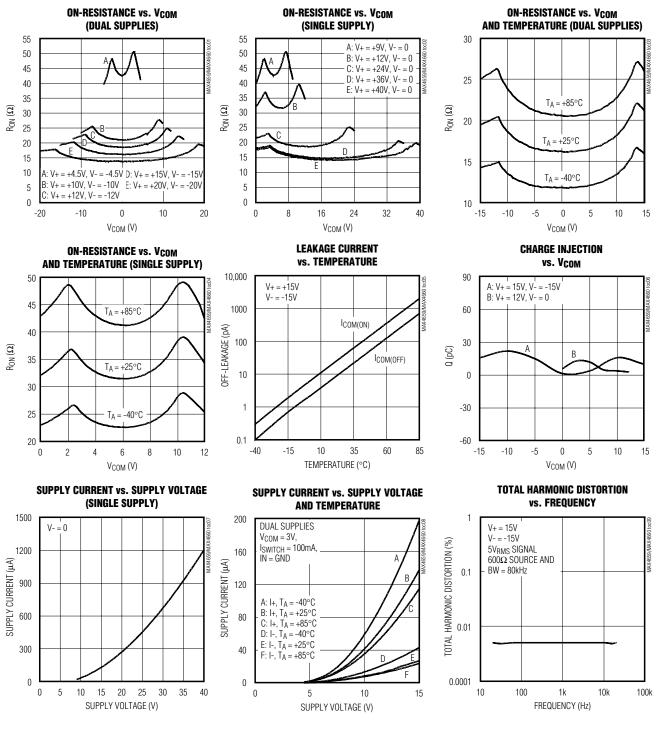
ELECTRICAL CHARACTERISTICS—Single Supply

(V+ = +12V, V- = 0, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 2, 6)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	ΤΥΡ	MAX	UNITS	
ANALOG SWITCH								
Analog Signal Range	VIN		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	0		V+	V	
On-Resistance	Devi	$I_{COM} = 25 mA;$	+25°C		38	50	Ω	
Oli-nesistance	R _{ON}	$V_{NO} \text{ or } V_{NC} = +10V$	T _{MIN} to T _{MAX}			60	52	
On-Resistance Matching	ADest	I _{COM} = 25mA;	+25°C		0.4	2	Ω	
Between Channels	ΔR _{ON}	$V_{NO} \text{ or } V_{NC} = \pm 10 V$	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			2.5	52	
On-Resistance Flatness	RFLAT (ON)	I _{COM} = 25mA; V _{NO} or V _{NC} = +2V, +6V,	+25°C		4	7	Ω	
(Note 3)	HELAT (ON)	+10V	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			9	52	
DYNAMIC CHARACTERISTICS								
Transition Time	ttrans $R_L = 300\Omega;$	200	20					
Transition Time		- ,	$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			250	ns	
Dreek Defere Make Dalay	*	$t_{BBM} \begin{array}{l} V_{NO} \text{ or } V_{NC} = 10V; \\ R_L = 300 \ \Omega; \\ C_L = 35 \text{pF}, \text{ Figure 2} \end{array}$	+25°C	20	50			
Break-Before-Make Delay	ιΒΒΜ		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$	10			ns	
Charge Injection	Q	$V_{GEN} = 0$, $R_{GEN} = 0$, $C_L = 1$ nF, Figure 4	+25°C		1		рС	
POWER SUPPLY								
Power-Supply Range	V+			+9		+40	V	
Positive Supply Current I+		I+ $V_{IN} = 0 \text{ or } 12V, V_{N_{-}} = 3V;$ $I_{SWITCH} = 50\text{mA}, MAX4660;$ $I_{SWITCH} = 25\text{mA}, MAX4659$ $V_{IN} = 5V, V_{N_{-}} = 3V;$ $I_{SWITCH} = 50\text{mA}, MAX4660;$	+25°C		50	100		
	l+ -		$T_{\mbox{MIN}}$ to $T_{\mbox{MAX}}$			125	μA	
r contro oupply our ont			+25°C		70	125	μ	
		I _{SWITCH} = 25mA, MAX4659 T _{MIN} to T _{MA}				150		

Note 2: The algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.

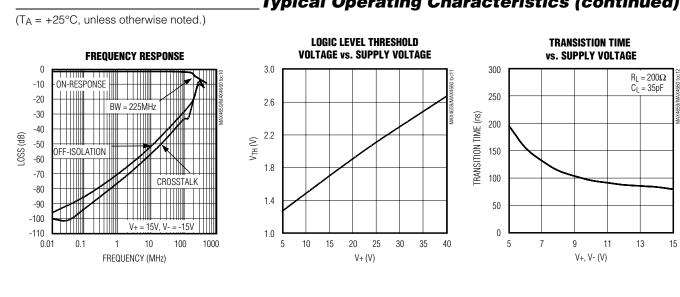
Note 3: Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal range.

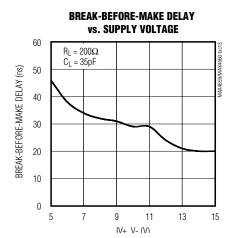

Note 4: Leakage parameters are 100% tested at maximum-rated hot temperature and guaranteed by correlation at $T_A = +25^{\circ}C$.

Note 5: Off-isolation = 20log₁₀ [V_{COM} / (V_{NC} or V_{NO})], V_{COM} = output, V_{NC} or V_{NO} = input to off switch.

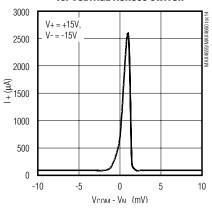
Note 6: -40°C specifications are guaranteed by design.

Typical Operating Characteristics


 $(T_A = +25^{\circ}C, unless otherwise noted.)$


Downloaded from Arrow.com.

5


MAX4659/MAX4660

Typical Operating Characteristics (continued)

SUPPLY CURRENT vs. VOLTAGE ACROSS SWITCH

Pin Description

PIN	NAME	FUNCTION
1	COM	Analog Switch Common
2	NC	Normally Closed Switch Terminal. NC is connected to COM when IN is low.
3	GND	Ground
4	V+	Positive Supply Voltage Input
5	N.C.	No Connection
6	IN	Digital Control Input
7	V-	Negative Supply Voltage Input
8	NO	Normally Open Switch Terminal. NO is connected to COM when IN is high.
	EP	Exposed Paddle. Connect EP to V+ or leave unconnected.

6

MAX4659/MAX4660

Detailed Description

The MAX4659/MAX4660 are single, single-pole/doublethrow (SPDT) CMOS analog switches. The CMOS switch construction provides rail-to-rail signal handling while consuming very little power. The switch is controlled by a TTL/CMOS level compatible digital input. The MAX4659/MAX4660 have a normally open switch and a normally closed switch.

These devices can be operated with either single power supplies or dual power supplies. Operation at up to $\pm 20V$ supplies allows users a wide switching dynamic range. Additionally, asymmetrical operation is possible to tailor performance to a particular application.

These switches have been specifically designed to handle high switch currents, up to 200mA peak current and 150mA continuous currents. In order to do this, a new technique is used to drive the body of the output N-channel device. (Note: The basic switch between the input, NC/NO terminal and the output common terminal consists of an N-channel MOSFET and a P-channel MOSFET in parallel.) The standard method limits operation to approximately a 600mV drop across the switch. More than 600mV causes an increase in Idon leakage current (due to the turn-on of on-chip parasitic diodes), and an increase in V+ supply current. With this new sensing method, there is no limitation to the voltage drop across the switch. Current and voltage are limited only by the power dissipation rating of the package and the absolute maximum ratings of the switch.

When the analog input voltage drop is approximately 7mV there is an increase in power supply current from 90μ A to 2mA (typ) within a 1mV to 7mV range, caused by the new sensing/driving circuitry.

Applications Information

Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. First, connect GND, followed by V+, V-, and the remaining pins. If power-supply sequencing is not possible, add two small-signal diodes (D1, D2) in series with supply pins (Figure 1). Adding diodes reduces the analog signal range to one diode drop below V+ and one diode drop above V-, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and V- should not exceed 44V. The protection diode for the negative supply is not required when V- is connected to GND.

Off-Isolation at High Frequencies

In 50 Ω systems, the high-frequency on-response of these parts extends from DC to above 100MHz, with a typical loss of -2dB. When the switch is turned off, however, it behaves like a capacitor and off-isolation decreases with increasing frequency. This effect is more pronounced with higher source and load impedances. Above 5MHz, circuit board layout becomes critical. The graphs shown in the *Typical Operating Characteristics* were taken using a 50 Ω source and load connected with BNC connectors.

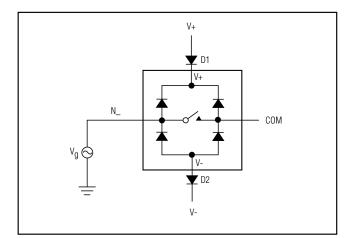
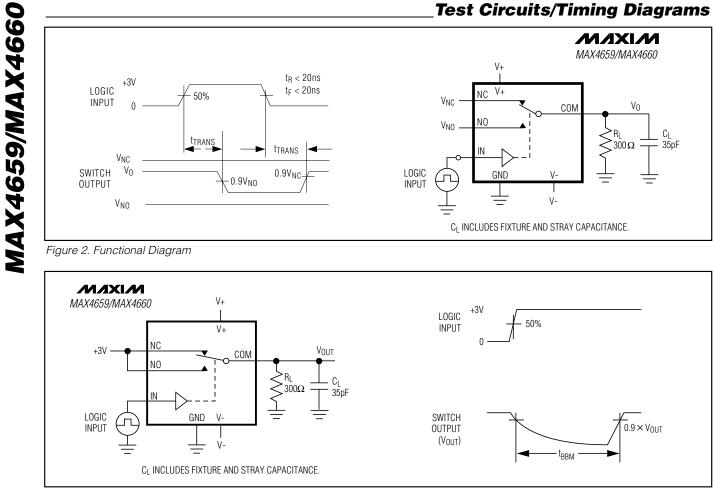



Figure 1. Overvoltage Protection Using Blocking Diodes

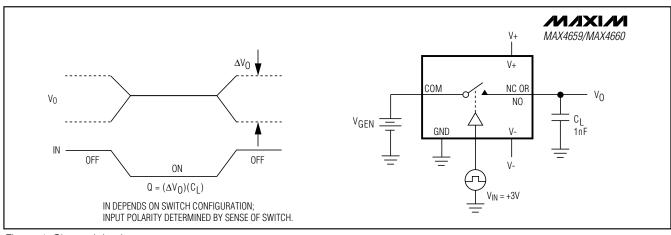
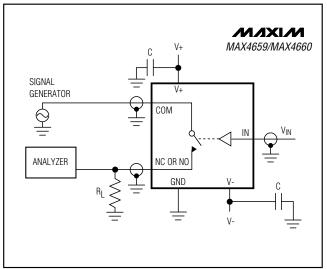



Figure 4. Charge Injection

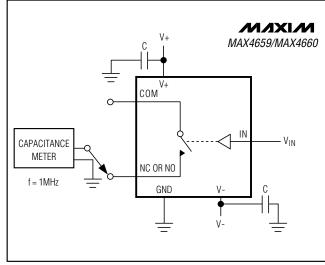
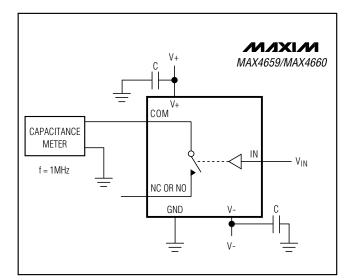



Figure 5. Off-Isolation

Figure 6. Crosstalk

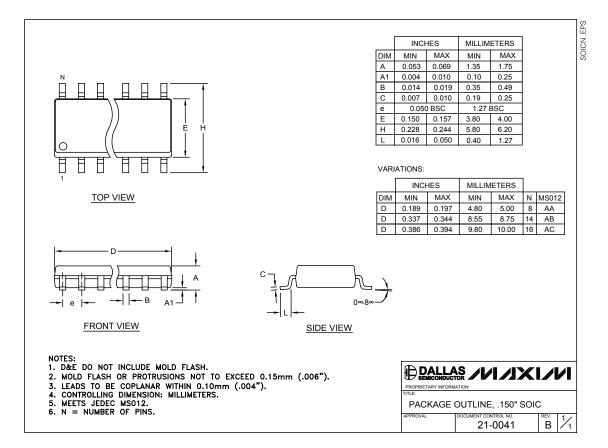
Figure 7. Channel Off-Capacitance

Chip Information

TRANSISTOR COUNT: 45 PROCESS: CMOS MAX4659/MAX4660

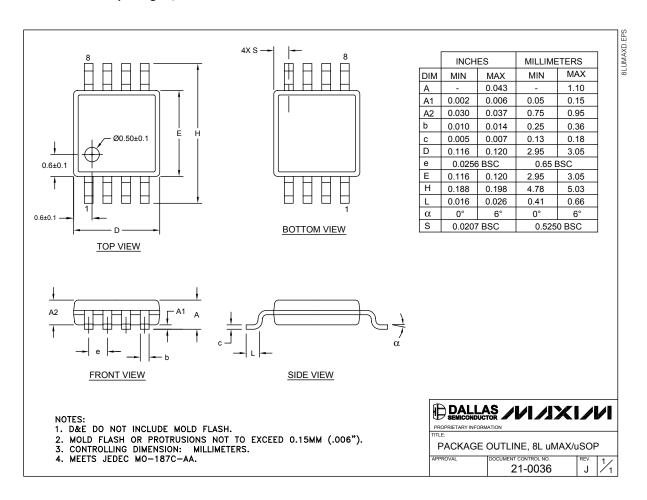
MIXI/M

Package Information


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

M/IXI/M

_Package Information (continued)


(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

MAX4659/MAX4660

_Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Revision History

Pages changed at Rev 1: 1, 6, 12

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

12

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2007 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products, Inc.