nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

Absolute Maximum Ratings

V _{CC} /REF to GND0.3V to +6\	\checkmark
IN to GND0.3V to +6\	\checkmark
OUT (Open-Drain) to GND0.3V to +6	/
OUT (Pushpull) to GND0.3V to V _{CC} + 0.3V	\checkmark
Continuous Current Into Any Input/Output	Ą
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
4 Dump M/L D (Derote $0.52 \text{m}/M/2^{\circ}$ chave 1.70° C) 766 4m/M	

4-Bump WLP (Derate 9.58mW/°C above +70°C)766.4mW 5-Pin SOT (Derate 3.9mW/°C above +70°C312.6mW

Operating Temperature Range	40°C to +125°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	

Package Thermal Characteristics (Note 1)

WLP

Junction-to-Ambient Thermal Resistance (θ_{JA}) ...104.41°C/W

SOT23

Junction-to-Ambient Thermal Resistance $(\theta_{JA}) \dots 255.9^{\circ}C/W$ Junction-to-Ambient Thermal Resistance $(\theta_{JC}) \dots \dots 81^{\circ}C/W$

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.maximintegrated.com/thermal-tutorial</u>.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics

 $V_{CC}/REF = 3.3V$, $R_{PULLUP} = 100k\Omega$ to $V_{PULLUP} = 3.3V$, $R_L = \infty$, $C_L = 20pF$, $T_A = T_{MIN}$ to T_{MAX} . Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
POWER SUPPLY VOLTAGE	·	·	·				
V _{CC} /REF Supply Voltage Range	V _{CC} /V _{REF}		1.7		5.5	V	
V _{CC} /REF Supply Current		$V_{IN} > 0$, $V_{OUT} = low$, no output or reference load current, $T_A = -40^{\circ}C$ to $+85^{\circ}C$		0.5	1.1		
	Icc	$V_{IN} > 0$, $V_{OUT} = low$, no output or reference load current, $T_A = -40^{\circ}C$ to $+125^{\circ}C$		1.3		μA	
Power-Up Time				0.5		ms	
COMPARATOR							
Input Voltage Range	V _{IN}	T _A = +25°C	0.1		V _{CC} + 0.1	V	
		T _A = -40°C to +125°C	0.1		V _{CC}		
Input Offset Voltage	V	Over V _{IN} range, T _A = -40°C to +85°C		0.5	27	~~\/	
(For External V _{REF} only) (Note 3)	V _{OS}	Over V _{IN} range, T _A = -40°C to +125°C			27	– mV	

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

Electrical Characteristics (continued)

 $V_{CC}/REF = 3.3V$, $R_{PULLUP} = 100k\Omega$ to $V_{PULLUP} = 3.3V$, $R_L = \infty$, $C_L = 20pF$, $T_A = T_{MIN}$ to T_{MAX} . Typical values are at $T_A = +25^{\circ}C$, unless otherwise noted. (Note 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
Input Offset Drift					100	µV/°C	
Input Hysteresis	V _{HYS}	(Note 4)		8		mV	
Input Pigo Current		Over V _{IN} range, T _A = -40°C to +85°C		20	30	24	
Input Bias Current		Over V _{IN} range, T _A = -40°C to +125°C			90	nA	
Input Leakage Current		No supply voltage, $T_A = -40^{\circ}C$ to $+85^{\circ}C$		20	30		
(V _{CC} /REF = 0) (MAX40002 and MAX40003)		No supply voltage, $T_A = -40^{\circ}C$ to $+125^{\circ}C$			80	nA	
Input Capacitance		Either input, over V _{CM} range		0.4		pF	
Devue Oversky Deisetien Detie	DODD	DC, internal V _{REF}	40			-10	
Power Supply Rejection Ratio	PSRR	DC, external V _{REF}	46			dB	
Output Voltage Swing Low	V _{OL}	Sinking 2mA, measured relative with GND			0.4	V	
Output Voltage Swing High	V _{OH}	Sourcing 1mA, measured with relative with V_{CC}			0.4	V	
Output Leakage Current	I _{O-LKG}	Open-drain only, $V_{CC}/REF = 1.8V$, $V_O = 5.5V$, $T_A = -40^{\circ}C$ to $+125^{\circ}C$			100	nA	
		100mV overdrive, pushpull OUT = low to high		25			
		100mV overdrive, open-drain, $R_{PU} = 100k\Omega$, OUT = low to high		25			
Propagation Delay		100mV overdrive, both push-pull and open-drain, OUT= high to low		9			
(Note 5)	t _{PD}	20mV overdrive, pushpull OUT = low to high		50		μs	
		20mV overdrive, open-drain, R_{PU} = 100k Ω , OUT = low to high		55			
		20mV overdrive, both pushpull and open-drain, OUT = high to low		45			
Rise Time	t _R	Push-pull output		800		ns	
Fall Time	t _F			200		ns	

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

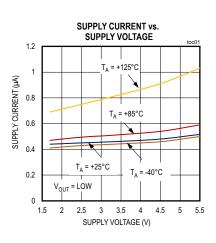
Electrical Characteristics (continued)

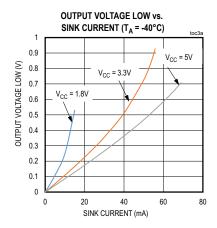
 V_{CC} /REF = 3.3V, R_{PULLUP} = 100kΩ to V_{PULLUP} = 3.3V, R_L = ∞, C_L = 20pF, T_A = T_{MIN} to T_{MAX}. Typical values are at T_A = +25°C, unless otherwise noted. (Note 2)

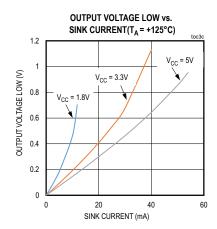
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
INTERNAL REFERENCE VOLTAGE							
		T _A = +25°C	MAX400002+	188	200	212	mV
Switching Threshold Voltage (Note 6)		T _A = -40°C to +85°C	MAX400002+	177		223	mV
	V _{REF-INT}	T _A = -40°C to +125°C	MAX400002+	174		226	mV
		T _A = +25°C	MAX400005+	485	500	515	mV
		T _A = -40°C to +85°C	MAX400005+	468		532	mV
		T _A = -40°C to +125°C	MAX400005+	463		537	mV

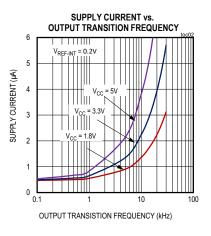
Note 2: All devices are 100% production tested at T_A = +25°C. Temperature limits are guaranteed by design.

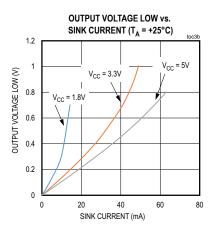
Note 3: V_{OS} is the average of the positive and negative trip points minus V_{REF} .

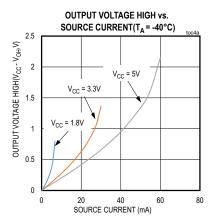

Note 4: Hysteresis is the input voltage difference between the two switching points.

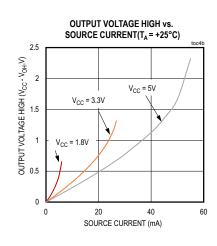

Note 5: Overdrive (V_{OD}) is the voltage above or below the switching points. The input starts at 100mV below the trip point and use 50% input to 50% output for timing. $V_{IN} = V_{REF_INT} \pm V_{OD} \pm V_{HYS}$. **Note 6:** Switching Threshold Voltages include the offset voltage of the comparator and the internal reference.

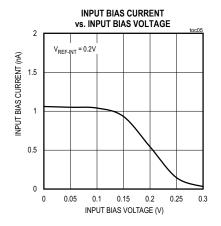

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

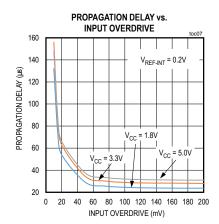

Typical Operating Characteristics

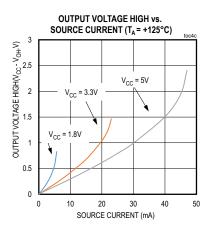

 $V_{CC}/REF = 3.3V$, $V_{GND} = 0V$, $T_A = 25^{\circ}C$, unless otherwise noted.

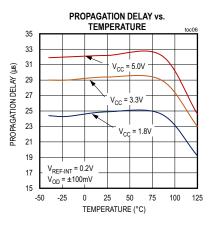


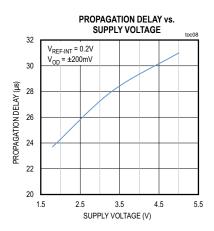


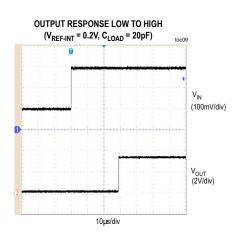

www.maximintegrated.com

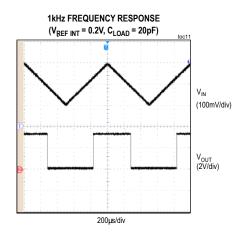

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

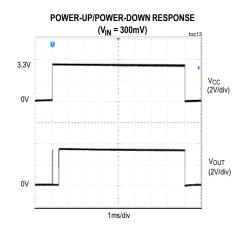

Typical Operating Characteristics (continued)

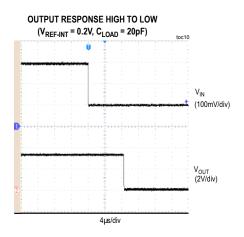

 V_{CC}/REF = 3.3V, V_{GND} = 0V, T_A =25°C, unless otherwise noted.

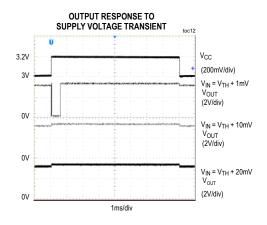


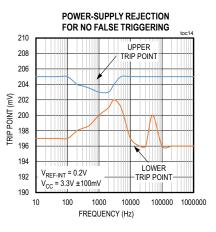


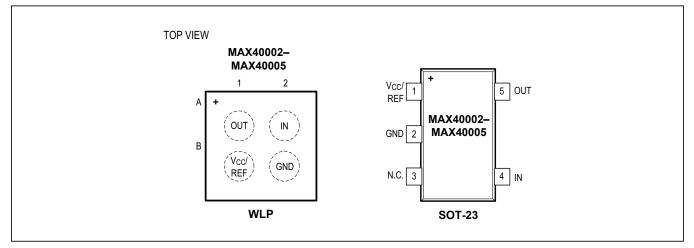



nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages


Typical Operating Characteristics (continued)


 $V_{CC}/REF = 3.3V$, $V_{GND} = 0V$, $T_A = 25^{\circ}C$, unless otherwise noted.





nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

Pin Configurations

Pin Description

Р	IN		FUNCTION			
WLP	SOT23	NAME	FUNCTION			
A1	5	OUT	Comparator Output. OUT is an Open-Drain Output (MAX40002/MAX40003) or Push-Pull Output (MAX40004/MAX40005). For the open-drain versions, connect a pullup resistor from OUT to any pullup voltage up to 5.5V for proper operation.			
A2	4	IN	Comparator Input. The MAX40002/MAX40004 have a noninverting input. The MAX40003/ MAX40005 have an inverting input (see <i>Input Stage Circuitry</i> for more information).			
B1	1	V _{CC} /REF	V_{CC} Supply Voltage/External REF Voltage Input. V_{CC}/REF is the supply voltage for devices with internal voltage reference (0.2V, 0.5V, 1.2V internal references. V_{CC}/REF is the external reference input as well as the supply voltage for devices without the internal reference. Bypass V_{CC}/REF with a 0.1µF capacitor to GND as close to the device pin as possible.			
B2	2	GND	Ground.			
_	3	N.C.	No Connect. Not internally connected.			

Detailed Description

The MAX40002–MAX40005 are extremely small comparators ideal for compact, low-current and low-voltage applications.

The devices (with internal reference voltage) consume only 500nA (typ). Low-voltage operating capability makes the MAX40002–MAX40005 extremely attractive to longlife, battery-operated applications. These applications can now use a single digital power supply rail used to power the new generation of microcontrollers. All parts are available in either tiny 4-bump WLP or 5-pin SOT23.

Input-Stage Circuitry

Non-inverting inputs are available on the MAX40002/ MAX40004 and their associated outputs assert high when the input voltage is greater than the voltage reference. Inverting inputs are available on the MAX40003/ MAX40005 and their associated outputs assert low when the input voltage is greater than the voltage reference.

The MAX40002–MAX40005 incorporate an innovative input-stage architecture that allows their input voltage to exceed V_{CC} by several volts (limited only by Absolute Maximum Ratings). This is unlike traditional comparators that have an input ESD diode clamp between the input and V_{CC}, limiting this maximum overvoltage to about 0.3V.

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

The device architecture maintain a high input impedance to input signals even when the device power-supply voltage is completely turned off (V_{CC} or V_{REF} taken to 0V). This greatly benefits flexible power-saving schemes to be easily implemented in advanced battery-operated devices. On-chip filtering provides immunity from any RF noise being picked up by input traces. These devices feature an internal temperature-compensated, low-power voltage references for improved PSRR.

Output Stage Structure

The MAX40002–MAX40003 have open-drain output structures that allow them to interface to logic circuitry operating from supply voltages other than the one supplied to the part. These devices require an external pullup resistor or current-source for proper operation. Most microcontroller digital input ports can be readily programmed to include these pullup sources.

The MAX40004–MAX40005 have a push-pull type output stage that can both sink and source current, eliminating the need for an external pullup resistor.

Applications Information

Bypassing V_{CC}/REF

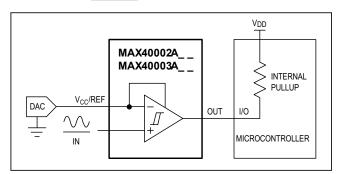
Place a 0.1μ F capacitor between V_{CC}/REF and GND as close to the device as possible. During a switching event, all comparators draw a current-spike from their power supply rails. This current-spike is minimized by the use of an internal Break-Before-Make design implementation.

Hysteresis Operation

The MAX40002–MAX40005 feature 8mV (typ) internal hysteresis for noise immunity and glitch-free operation. If additional hysteresis is needed, an external positive feedback network can be easily implemented on the MAX40002/MAX40004 with noninverting input devices (both internal and external reference). Additional external hysteresis is not recommended for the MAX40003/ MAX40005 (with external reference) due to possible crossover current related noise problems. Additional external hysteresis is not possible on the MAX40003/ MAX40005 (internal reference) because the noninverting input of the comparator is not externally accessible.

Adaptive Signal Level Detector

The MAX40002 and MAX40003 can be used as an adaptive signal-level detector. Feed a DAC output voltage to REF and connect the input to a variable signal level. As the DAC output voltage is varied from 1.7V to 5.5V, a corresponding signal level threshold detector circuit is implemented (Figure 1).



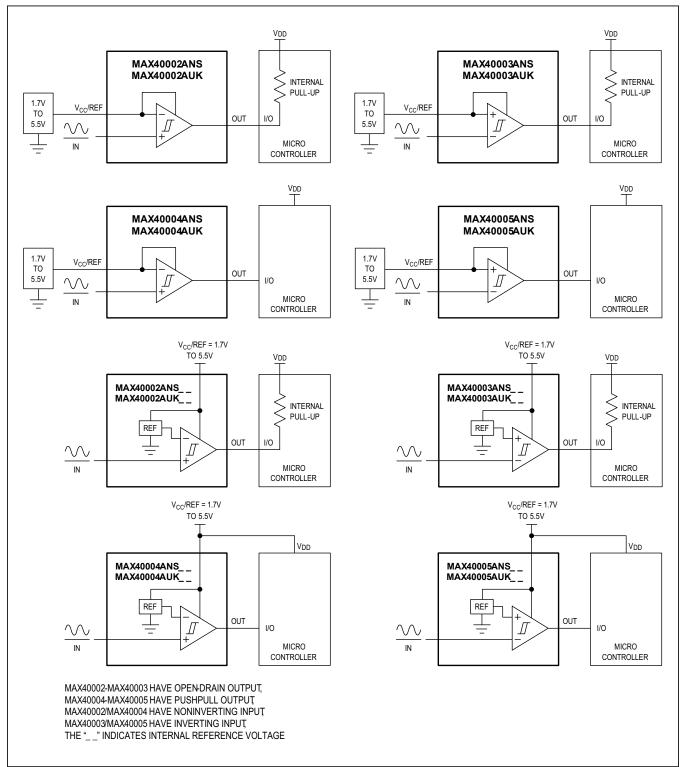

Figure 1. Adaptive Signal-Level Detector

Table 1. How Devices Behave Under Various Input Voltage Conditions

			•	
PART	V _{REF}	INPUT POLARITY	INPUT VOLTAGE CONDITIONS	ACTION AT OUTPUT
MAX40002,		Noninverting	$V_{IN} > V_{REF}$	Output goes high
MAX40004	External	Noninverting	V _{IN} < V _{REF}	Output goes low
MAX40003,		lo vortin a	V _{IN} > V _{REF}	Output goes low
MAX40005		Inverting	V _{IN} < V _{REF}	Output goes high
MAX40002,		Noninverting	V _{IN} > V _{REF_INT}	Output goes high
MAX40004	latera el	Noninverting	V _{IN} < V _{REF_INT}	Output goes low
MAX40003,	Internal	lawa fi a a	V _{IN} > V _{REF_INT}	Output goes low
MAX40005		Inverting	V _{IN} < V _{REF_INT}	Output goes high

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

Typical Operating Circuits

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

Selector Guide

PART NUMBER	INTERNAL REFERENCE VOLTAGE (V)	INPUT	OUTPUT	TOP MARK
MAX40002ANS+T*	_	Noninverting	OPEN-DRAIN	+
MAX40002AUK+T*		Noninverting	OPEN-DRAIN	+AMHU
MAX40002ANS02+T	0.2	Noninverting	OPEN-DRAIN	+M
MAX40002AUK02+T	0.2	Noninverting	OPEN-DRAIN	+AMHV
MAX40002ANS05+T*	0.5	Noninverting	OPEN-DRAIN	+N
MAX40002AUK05+T*	0.5	Noninverting	OPEN-DRAIN	+AMHW
MAX40002ANS12+T*	1.2	Noninverting	OPEN-DRAIN	+P
MAX40002AUK12+T*	1.2	Noninverting	OPEN-DRAIN	+AMHY
MAX40003ANS+T*		Inverting	OPEN-DRAIN	+J
MAX40003AUK+T*	_	Inverting	OPEN-DRAIN	+AMHZ
MAX40003ANS02+T	0.2	Inverting	OPEN-DRAIN	+Q
MAX40003AUK02+T*	0.2	Inverting	OPEN-DRAIN	+AMIA
MAX40003ANS05+T*	0.5	Inverting	OPEN-DRAIN	+R
MAX40003AUK05+T*	0.5	Inverting	OPEN-DRAIN	+AMIB
MAX40003ANS12+T*	1.2	Inverting	OPEN-DRAIN	+T
MAX40003AUK12+T*	1.2	Inverting	OPEN-DRAIN	+AMID
MAX40004ANS+T*	—	Noninverting	PUSHPULL	+K
MAX40004AUK+T*	—	Noninverting	PUSHPULL	+AMIE
MAX40004ANS02+T	0.2	Noninverting	PUSHPULL	+W
MAX40004AUK02+T*	0.2	Noninverting	PUSHPULL	+AMIF
MAX40004ANS05+T*	0.5	Noninverting	PUSHPULL	+X
MAX40004AUK05+T*	0.5	Noninverting	PUSHPULL	+AMIG
MAX40004ANS12+T*	1.2	Noninverting	PUSHPULL	+U
MAX40004AUK12+T*	1.2	Noninverting	PUSHPULL	+AMIJ
MAX40005ANS+T	—	Inverting	PUSHPULL	+L
MAX40005AUK+T	—	Inverting	PUSHPULL	+AMIK
MAX40005ANS02+T	0.2	Inverting	PUSHPULL	+Z
MAX40005AUK02+T*	0.2	Inverting	PUSHPULL	+AMIL
MAX40005ANS05+T	0.5	Inverting	PUSHPULL	+1
MAX40005AUK05+T*	0.5	Inverting	PUSHPULL	+AMIM
MAX40005ANS12+T*	1.2	Inverting	PUSHPULL	+V
MAX40005AUK12+T*	1.2	Inverting	PUSHPULL	+AMIO

*Future Product—Contact factory for availability.

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX40002ANS+T*	-40°C to +125°C	4 WLP
MAX40002ANS+T	-40°C to +125°C	4 WLP
MAX40002AUK+T*	-40°C to +125°C	5 SOT23
MAX40002AUK+T	-40°C to +125°C	5 SOT23
MAX40003ANS+T*	-40°C to +125°C	4 WLP
MAX40003ANS+T	-40°C to +125°C	4 WLP
MAX40003AUK+T*	-40°C to +125°C	5 SOT23
MAX40003AUK+T*	-40°C to +125°C	5 SOT23
MAX40004ANS+T*	-40°C to +125°C	4 WLP
MAX40004ANS+T	-40°C to +125°C	4 WLP
MAX40004AUK+T*	-40°C to +125°C	5 SOT23
MAX40004AUK+T*	-40°C to +125°C	5 SOT23
MAX40005ANS+T	-40°C to +125°C	4 WLP
MAX40005ANS+T	-40°C to +125°C	4 WLP
MAX40005AUK+T	-40°C to +125°C	5 SOT23
MAX40005AUK+T*	-40°C to +125°C	5 SOT23

Chip Information

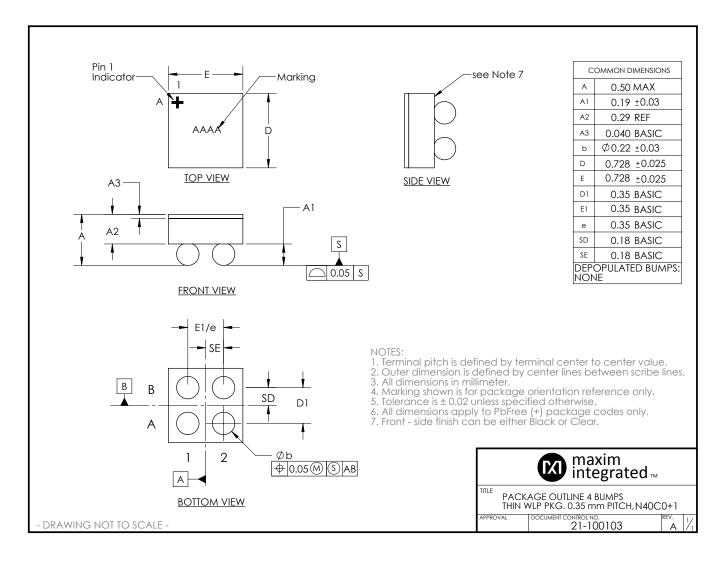
PROCESS: BICMOS

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and reel.

*Future product—contact factory for availability.

The "__" are placeholders for internal reference voltage level. For example, the MAX40002ANS05+T has an onboard 0.5V reference voltage.


Devices without "__" use external reference voltage as supply voltage.

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

Package Information

For the latest package outline information and land patterns (footprints), go to <u>www.maximintegrated.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
4 WLP	N40C0+1	<u>21-100103</u>	Refer to <u>Application Note AN1891</u>
5 SOT23	U5+1	<u>21-0057</u>	<u>90-0174</u>

nanoPower 4-Bump Comparator in Ultra-Tiny 0.73mm x 0.73mm WLP/SOT23 Packages

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	3/17	Initial release	_
1	4/17	Updated <i>Selector Guide</i> and <i>Ordering Information</i> tables to remove future product status from MAX40002AUK02+T, MAX40005ANS+T, and MAX40005AUK+T	11, 12
2	8/17	Updated Electrical Characteristics table and Selector Guide	2–4, 11

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2017 Maxim Integrated Products, Inc. | 14