
ABSOLUTE MAXIMUM RATINGS (Note 1)

– I Z V
M^{-} to M^{+}
V ⁻ to V ⁺
30V to 30V
GND to 12V
(V ⁻ + 30V) to (V ⁺ - 30V)
$-0.3V$ to (V _{CC} + 0.3V)

Short-Circuit Duration	
V+	30 sec
V ⁻	30 sec
Driver Output	Indefinite
Receiver Output	Indefinite
Operating Temperature Range	
LT1080C/LT1081C	0°C to 70°C
LT1080I/LT1081I	40°C to 85°C
LT1080M/LT1081M (OBSOLETE)	-55°C to 125°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering, 10 sec).	300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at T_A = 25°C. (Note 2)

PARAMETER	CONDITIONS			MIN	ТҮР	MAX	UNITS
Driver	<u> </u>						
Output Voltage Swing	Load = 3k to GND Both Outputs	Positive Negative	•	5 -5	7.3 -6.5		V V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)		•	2	1.4 1.4	0.8	V V
Logic Input Current	$\begin{array}{c} V_{IN} \geq 2V \\ V_{IN} \leq 0.8V \end{array}$				5 5	20 20	μΑ μΑ
Output Short-Circuit Current	Sourcing Current, V _{OUT} = 0V Sinking Current, V _{OUT} = 0V			9 -9	12 –12		mA mA
Output Leakage Current	SHUTDOWN (Note 3), $V_{OUT} = \pm 3$	30V	•		10	100	μA
Data Rate (Note 6)	$R_L = 3k, C_L = 2500pF$ $R_L = 3k, C_L = 1000pF$			120 250			kBd kBd
Slew Rate	$R_L = 3k, C_L = 51pF$			4	15	30	V/µs
Receiver							
Input Voltage Thresholds	Input Low Threshold	Commercial Industrial and Military	•	0.8 0.2	1.3 1.3		V V
	Input High Threshold	Commercial Industrial and Military	•		1.7 1.7	2.4 3.0	V V
Hysteresis			•	0.1	0.4	1	V
Input Resistance	$V_{IN} = \pm 10V$			3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6mA$ Output High, $I_{OUT} = 160\mu A (V_{CC} = 5V)$		•	3.5	0.2 4.8	0.4	V V
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC} Sourcing Current, V _{OUT} = 0V			-10 0.6	-20 1		mA mA
Output Leakage Current	SHUTDOWN (Note 3), $0V \le V_{OUT} \le V_{CC}$				1	10	μA
Power Supply Generator (Note 4)							
V ⁺ Output Voltage	I _{OUT} = 0mA I _{OUT} = 10mA I _{OUT} = 15mA			8.0 7.0 6.5	9.0 8.0 7.5		V V V
V ⁻ Output Voltage	$I_{OUT} = 0mA$ $I_{OUT} = -10mA$ $I_{OUT} = -15mA$			-7.5 -5.5 -5.0	-8.5 -6.5 -6.0		V V V
Supply Current			•		12	22	mA
Supply Leakage Current (V _{CC})	SHUTDOWN (Note 3), LT1080 Only				1	100	μA
ON/OFF Pin Current	$0V \le V_{ON/\overline{OFF}} \le 5V$, LT1080 Only			-15		80	μA
Supply Rise Time	(Note 5), LT1080 Only				1		ms

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: These parameters apply for $4.5V \le V_{CC} \le 5.5V$ and $V_{ON/OFF} = 3V$, unless otherwise specified.

Note 3: $V_{ON/\overline{OFF}} = 0.4V$ for $-55^{\circ}C \le T_A \le 50^{\circ}C$, and $V_{ON/\overline{OFF}} = 0.2V$ for $50^{\circ}C \le T_A \le 125^{\circ}C.$ (LT1080 only)

Note 4: Unless otherwise specified, V_{CC} = 5V, external loading of V⁺ and V⁻ equals zero and the driver outputs are low (inputs high).

Note 5: Time from either SHUTDOWN high or power on until $V^+ \ge 6V$ and $V^- \leq -6V$. All external capacitors are 1µF.

Note 6: Data rate operation guaranteed by slew rate, short-circuit current and propagation delay tests.

PIN FUNCTIONS (Pin numbers refer to LT1080)

C1+; C1-; C2+; C2- (Pins 2, 4, 5, 6): Requires an external capacitor ($\geq 1\mu$ F) from C1+ to C1- and another from C2+ to C2⁻. Pin 2 can be used for connecting a second positive supply. When a separate positive supply is used, C1 can be deleted.

V⁺ (Pin 3): Positive Supply for RS232 Drivers.

 $V^+ \approx 2V_{CC} - 1.5V$. Requires an exterenal capacitor ($\geq 1\mu F$) for charge storage. May be loaded (up to 15mA) for external system use. Loading does reduce V⁺ voltage (see graphs). Capacitor may be tied to ground or +5V input supply. With multiple transceivers, the V⁺ and V⁻ pins may be paralleled into common capacitors.

V⁻ (Pin 7): Negative Supply for RS232 Drivers.

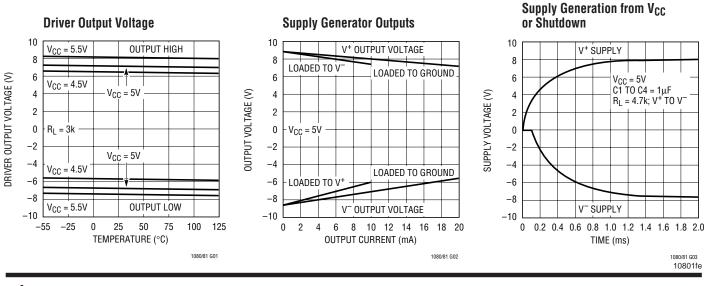
 $V^- \approx -(2V_{CC} - 2.5V)$. Requires an external capacitor ($\geq 1\mu F$) for charge stroage. May be loaded (up to -15mA) for external system use. Loading does reduce V⁻ voltage (see graphs). With multiple transceivers, the V⁺ and V⁻ pins may be paralleled into common capacitors.

TR2 OUT; TR1 OUT (Pins 8, 15): Driver Outputs with RS232 Voltage Levels. Outputs are in a high impedance state when in the SHUTDOWN mode or when power is off ($V_{CC} = 0V$) to allow data line sharing. Outputs are fully short-circuit protected from (V⁻ + 30V) to (V⁺ - 30V) with power on, off or in the SHUTDOWN mode. Typical output breakdowns are greater than $\pm 45V$ and higher applied

voltages will not damage the device if moderately current limited. Shorting one output will affect output from the other.

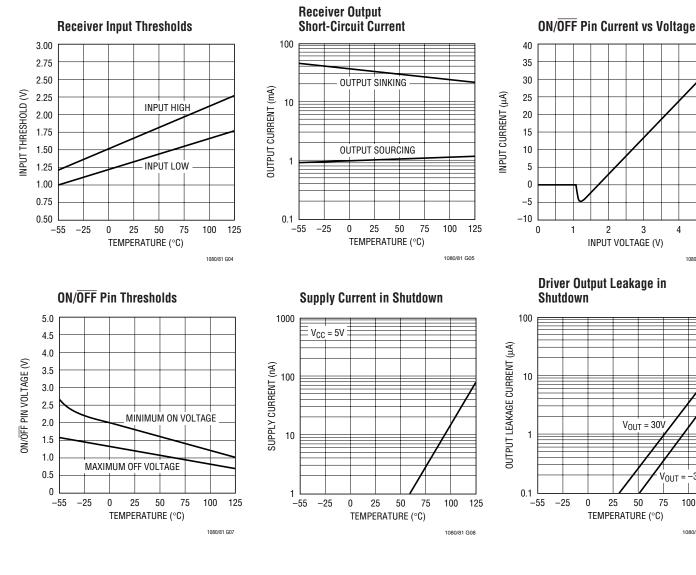
REC2 IN; REC1 IN (Pins 9, 14): Receiver Inputs. Accepts RS232 voltage levels (\pm 30V) and has 0.4V of hysteresis to provide noise immunity. Input impedance is nominally 5k Ω .

REC2 OUT; REC1 OUT (Pins 10, 13): Receiver Outputs with TTL/CMOS Voltage Levels. Outputs are in a high impedance state when in the SHUTDOWN mode to allow data line sharing. Outputs are fully short-circuit protected to ground or V_{CC} with power on, off or in the SHUTDOWN mode.


TR2 IN; TR1 IN (Pins 11, 12): RS232 Driver Input Pins. Inputs are TTL/CMOS compatible. Inputs should not be allowed to float. Tie unused inputs to V_{CC} .

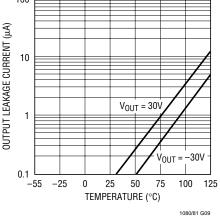
GND (Pin 16): Ground Pin.

 V_{CC} (Pin 17): Input Supply Pin. Supply current drops to zero in the SHUTDOWN mode.


ON/OFF (Pin 18): Contols the operation mode of the LT1080 and is TTL/CMOS compatible. A logic low puts the device in the SHUTDOWN mode which reduces input supply current to zero and places both driver and receiver outputs in a high impedance state. A logic high fully enables the device.

TYPICAL PERFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCE CHARACTERISTICS

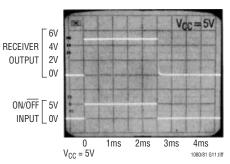

2

3

4

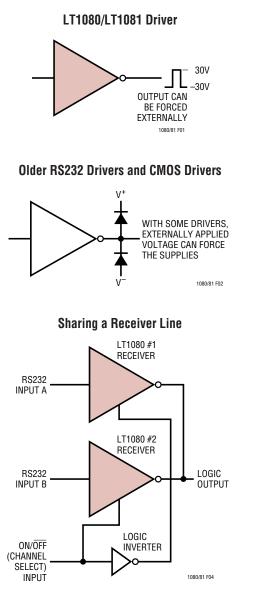
5

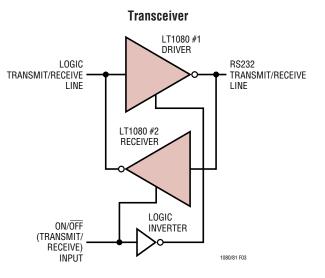
1080/81 G06


Vcc=5V 5V $R_L = 3k$ DRIVER 0V OUTPUT -5V RECEIVER 5V OUTPUT OV 5V INPUT 0V 0 2µs 4μs 6µs 8µs $V_{CC} = 5V$. 1080/81 G10.tiff $R_L = 3k$

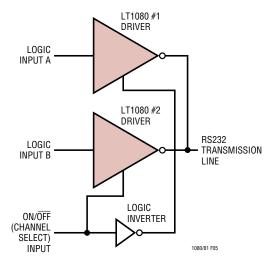
Output Waveforms

Shutdown to Receiver Output

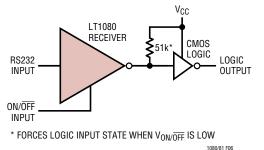



10801fe

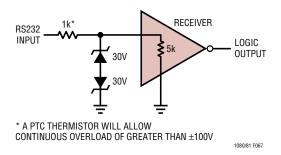
APPLICATIONS INFORMATION


The driver output stage of the LT1080 offers significantly improved protection over older bipolar and CMOS designs. In addition to current limiting, the driver output can be externally forced to \pm 30V with no damage or excessive current flow, and will not disrupt the supplies. Some drivers have diodes connected between the outputs and the supplies, so externally applied voltages can cause excessive supply voltage to develop. Placing the LT1080 in the SHUTDOWN mode (Pin 18 low) puts both the driver and receiver outputs in a high impedance state. This allows data line sharing and transceiver applications.

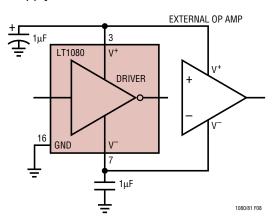
The SHUTDOWN mode also drops input supply current (V_{CC} ; Pin 17) to zero for power-conscious systems.

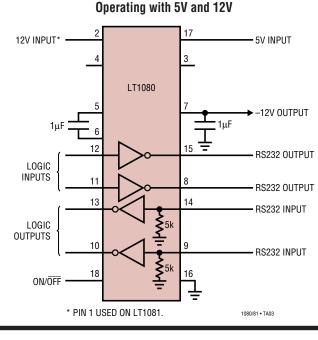


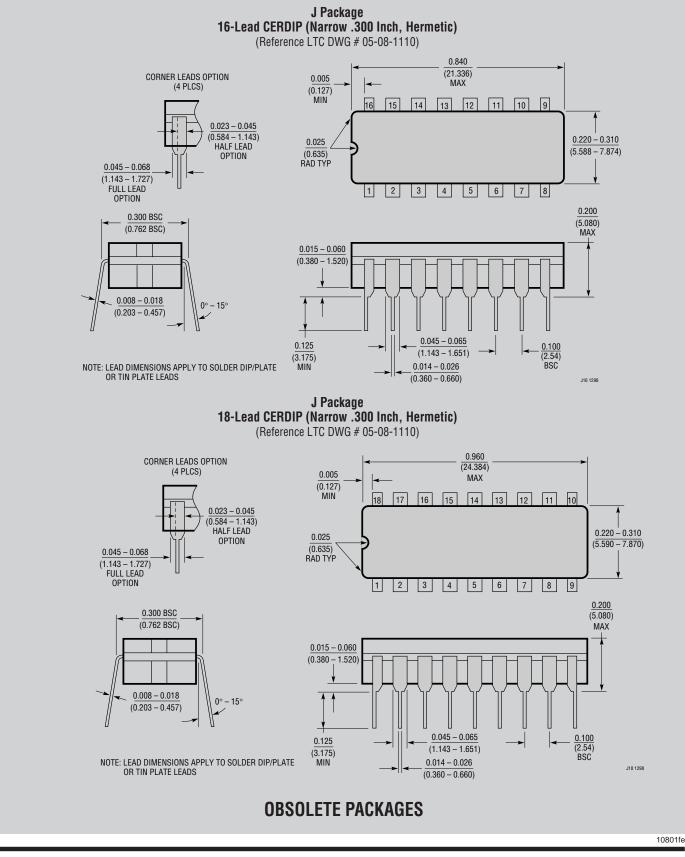
6 Downloaded from Arrow.com.

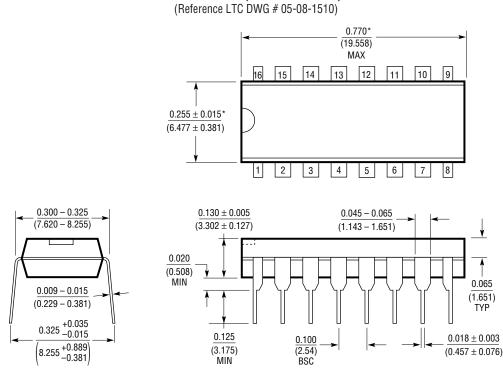


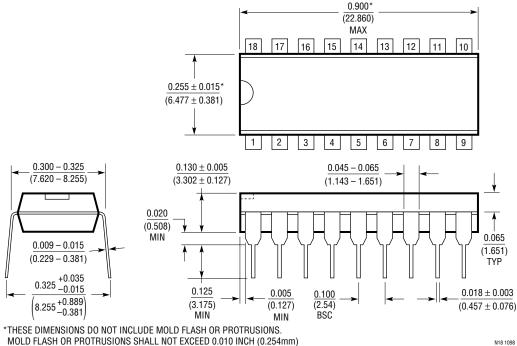
APPLICATIONS INFORMATION


When driving CMOS logic from a receiver that will be used in the SHUTDOWN mode and there is no other active receiver on the line, a 51k resistor can be placed from the logic input to V_{CC} to force a definite logic level when the receiver output is in a high impedance state.


To protect against receiver input overloads in excess of $\pm 30V$, a voltage clamp can be placed on the data line and still maintain RS232 compatibility.


The generated driver supplies (V⁺ and V⁻) may be used to power external circuitry such as other RS232 drivers or op amps. They should be loaded with care, since excessive loading can cause the generated supply voltages to drop, causing the RS232 driver output voltages to fall below RS232 requirements. See the graph "Supply Generator Outputs" for a comparison of generated supply voltage versus supply current.

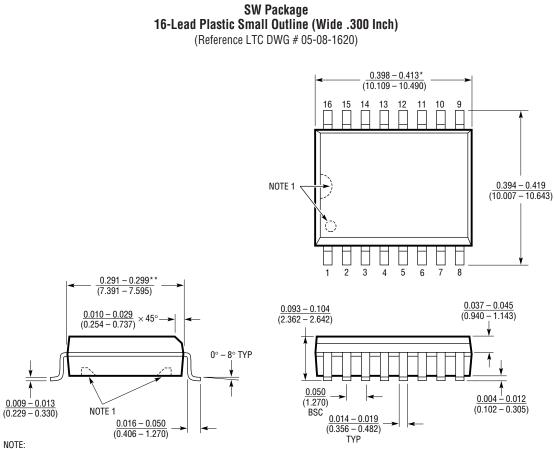

TYPICAL APPLICATION



N Package 16-Lead PDIP (Narrow .300 Inch)

*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)

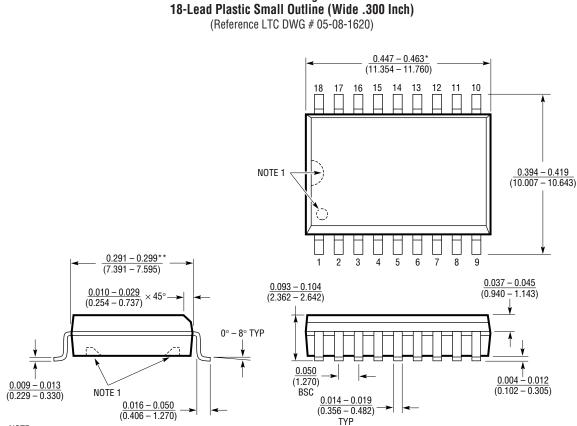
> N Package 18-Lead PDIP (Narrow .300 Inch) (Reference LTC DWG # 05-08-1510)



Downloaded from Arrow.com.

10801fe

N16 1098


NOTE: 1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.

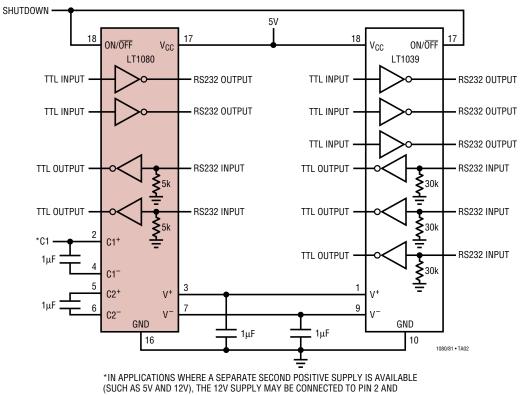
S16 (WIDE) 1098

THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

SW Package

NOTE:


1. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS. THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS S18 (WIDE) 1098

*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE

**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE

TYPICAL APPLICATION

Supporting an LT1039 (Triple Driver/Receiver)

C1 DELETED. THE POWER SUPPLY CIRCUITRY WILL THEN INVERT THE 12V SUPPLY. THE 5V SUPPLY IS STILL NEEDED TO POWER THE BIASING CIRCUITRY AND RECEIVERS.

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1180A/LT1181A	5V Low Power 2DR/2TX RS232 Transceiver	0.1µF Capacitors, 10kV ESD
LT1780/LT1781	5V Low Power 2DR/2TX RS232 Transceiver	15kV ESD
LT1381	5V Low Power 2DR/2TX RS232 Transceiver	16-Pin Narrow SO Package
LT1130A/LT1140A	5V RS232 Transceivers	Up to 5DR/5RX
LTC1383	5V Low Power 2DR/2RX RS232 Transceiver	Low Supply Current I _{CC} = 220µA
LTC1386	3.3V Low Power EIA/TIA562 Transceiver	Low Supply Current I _{CC} = 200µA

