
L272

BLOCK DIAGRAMS

SCHEMATIC DIAGRAM (one only)

57

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit	
Vs	Supply Voltage	28	V	
Vi	Input Voltage	Vs		
Vi	Differential Input Voltage	$\pm V_s$		
Ιo	DC Output Current	1	А	
Ιp	Peak Output Current (non repetitive)	1.5	А	
Ptot	Power Dissipation at: $T_{amb} = 80^{\circ}C$ (L272), $T_{amb} = 50^{\circ}C$ (L272M), $T_{case} = 90^{\circ}C$ (L272D) $T_{case} = 75^{\circ}C$ (L272)	1.2 5	W W	
T _{op}	Operating Temperature Range (L272D)	– 40 to 85	°C	
T _{stg} , T _j	Storage and Junction Temperature	– 40 to 150	°C	

THERMAL DATA

Symbol	Parameter	Powerdip	SO16	Minidip	Unit	
R _{th j-case}	Thermal Resistance Junction-pins	Max.	15	-	* 70	°C/W
R _{th j-amb}	Thermal Resistance Junction-ambient	Max.	70	—	100	°C/W
R _{th j-alumina}	Thermal Resistance Junction-alumina	Max.	-	** 50	Ι	°C/W

* Thermal resistance junction-pin 4
** Thermal resistance junctions-pins with the chip soldered on the middle of an alumina supporting substrate measuring 15x 20mm; 0.65mm thickness and infinite heatsink.

ELECTRICAL CHARACTERISTICS ($V_S = 24V$, $T_{amb} = 25^{\circ}C$ unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	
Vs	Supply Voltage		4		28	V
ls	Quiescent Drain Current	$V_{O} = \frac{V_{S}}{2} \qquad \begin{array}{c} V_{s} = 24V \\ V_{s} = 12V \end{array}$		8 7.5	12 11	mA mA
I _b	Input Bias Current			0.3	2.5	μΑ
Vos	Input Offset Voltage			15	60	mV
l _{os}	Input Offset Current			50	250	nA
SR	Slew Rate			1		V/µs
В	Gain-bandwidth Product			350		kHz
Ri	Input Resistance		500			kΩ
Gv	O. L. Voltage Gain	f = 100Hz f = 1kHz	60	70 50		dB dB
e _N	Input Noise Voltage	B = 20 kHz		10		μV
I _N	Input Noise Current	B = 20kHz		200		pА
CRR	Common Mode Rejection	f = 1kHz	60	75		dB
SVR	Supply Voltage Rejection	$ \begin{array}{l} f = 100 Hz, R_G = 10 k \Omega, V_R = 0.5 V \\ V_s = 24 V \\ V_s = \pm 12 V \\ V_s = \pm 6 V \end{array} $	54	70 62 56		dB
Vo	Output Voltage Swing	$\begin{array}{l} I_{p}=0.1A\\ I_{p}=0.5A \end{array}$	21	23 22.5		V V
Cs	Channel Separation	$ \begin{array}{l} f=1 \text{ kHz; } R_L=10\Omega, \ G_v=30 \text{dB} \\ V_s=24 \text{V} \\ V_s=\pm 6 \text{V} \end{array} $		60 60		dB
d	Distortion	f = 1kHz, G_v = 3 dB, V_s = 24V, R_L = ∞		0.5		%
T_{sd}	Thermal Shutdown Junction Temperature			145		°C

57

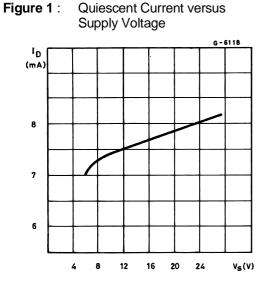


Figure 3 : Open Loop Voltage Gain

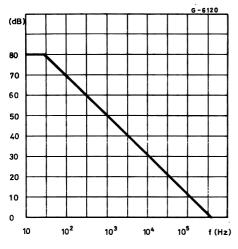


Figure 5 : Output Voltage Swing versus Load Current

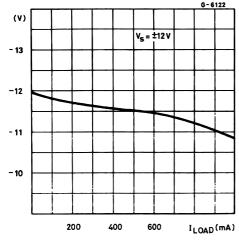


Figure 2 : Quiescent Drain Current versus Temperature

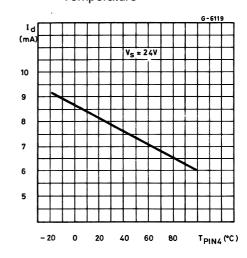


Figure 4 : Output Voltage Swing versus Load Current

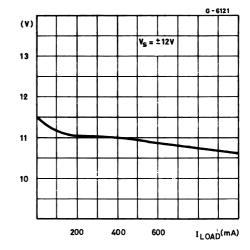
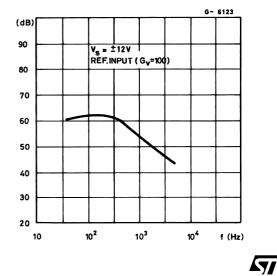
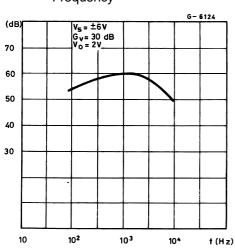
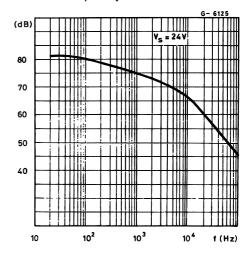



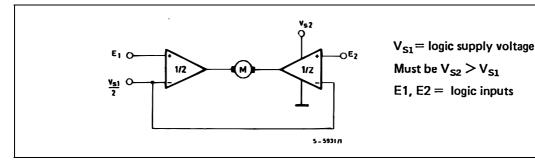
Figure 6 : Supply Voltage Rejection versus Frequency

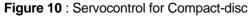


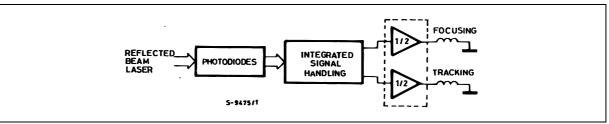

Figure 7 : Channel Separation versus Frequency

APPLICATION SUGGESTION

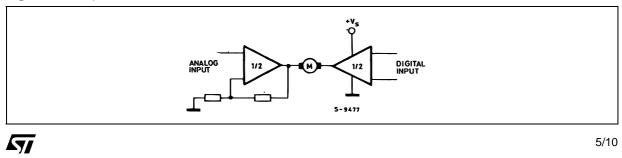
NOTE


In order to avoid possible instability occuring into final stage the usual suggestions for the linear power stages are useful, as for instance :


Figure 8 : Common Mode Rejection versus Frequency



- layout accuracy ;
- a 100nF capacitor corrected between supply pins and ground ;
- boucherot cell (0.1 to 0.2 μ F + 1 Ω series) between


Figure 9 : Bidirectional DC Motor Control with μP Compatible Inputs

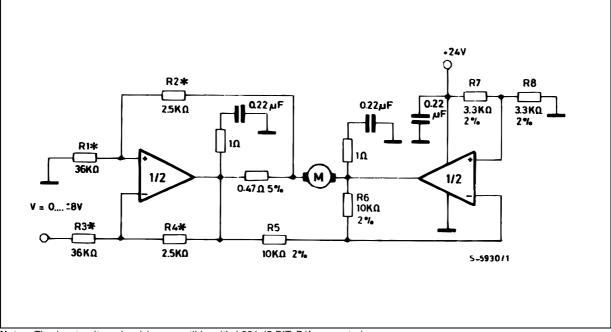
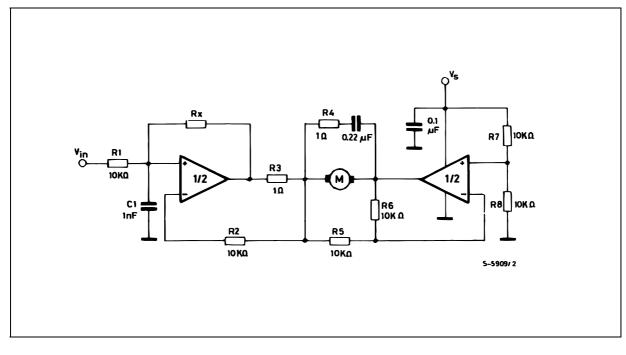
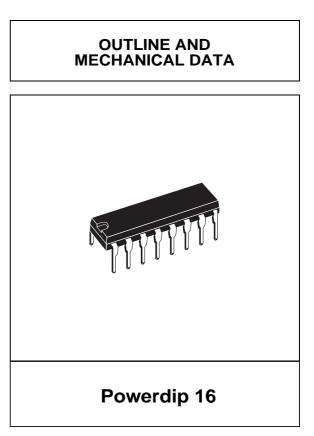


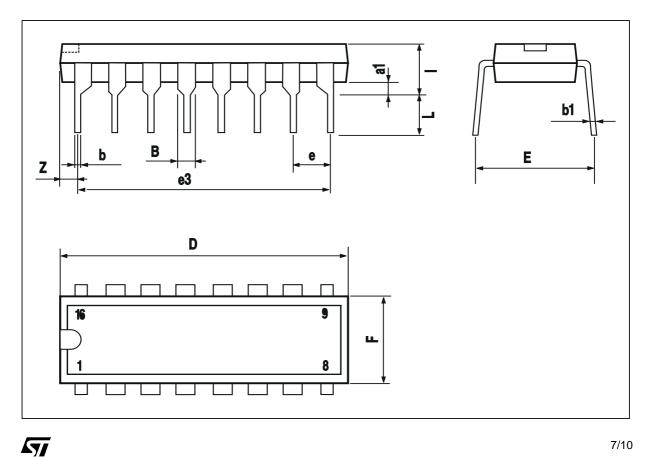
Figure 12 : Motor Current Control Circuit.



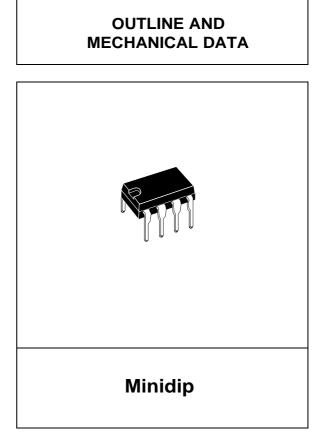
Note : The input voltage level is compatible with L291 (5-BIT D/A converter).

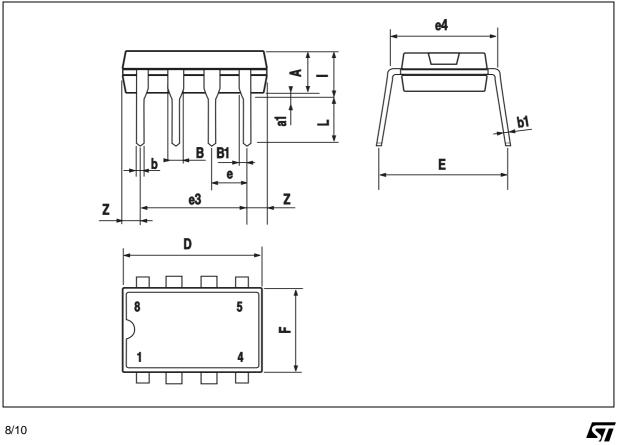
Figure 13 : Bidirectional Speed Control of DC Motors.

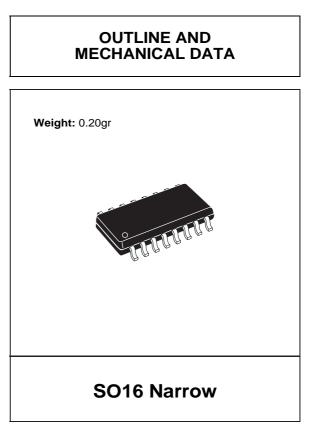

For circuit stability ensure that $R_X > \frac{2R3 \circ R1}{R_M}$ where R_M = internal resistance of motor.


The voltage available at the terminals of the motor is $V_M = 2 (V_i \cdot \frac{V_s}{2}) + |R_o| \cdot I_M$ where $|R_o| = \frac{2R \circ R1}{R_X}$ and I_M is the motor current.

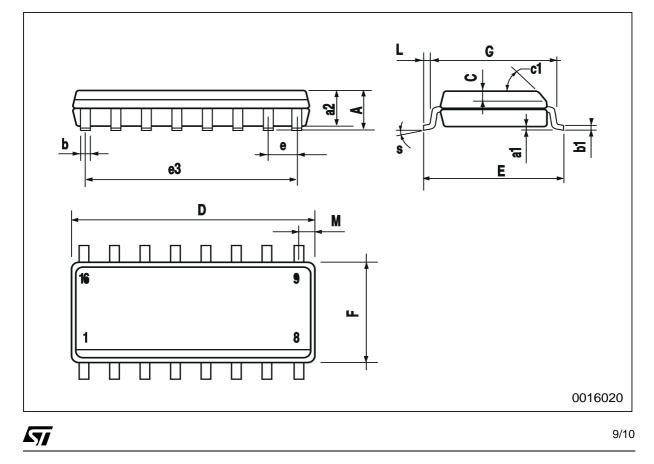
57


DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.85		1.40	0.033		0.055	
b		0.50			0.020		
b1	0.38		0.50	0.015		0.020	
D			20.0			0.787	
E		8.80			0.346		
е		2.54			0.100		
e3		17.78			0.700		
F			7.10			0.280	
I			5.10			0.201	
L		3.30			0.130		
Z			1.27			0.050	




L272

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А		3.32			0.131	
a1	0.51			0.020		
В	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
Е	7.95		9.75	0.313		0.384
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0.260
I			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060



DIM.	mm			inch		
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.75			0.069
a1	0.1		0.25	0.004		0.009
a2			1.6			0.063
b	0.35		0.46	0.014		0.018
b1	0.19		0.25	0.007		0.010
С		0.5			0.020	
c1			45° (typ.)		
D (1)	9.8		10	0.386		0.394
Е	5.8		6.2	0.228		0.244
е		1.27			0.050	
e3		8.89			0.350	
F (1)	3.8		4	0.150		0.157
G	4.6		5.3	0.181		0.209
L	0.4		1.27	0.016		0.050
М			0.62			0.024
S	8°(max.)					

(1) D and F do not include mold flash or protrusions. Mold flash or potrusions shall not exceed 0.15mm (.006inch).

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. http://www.st.com

51