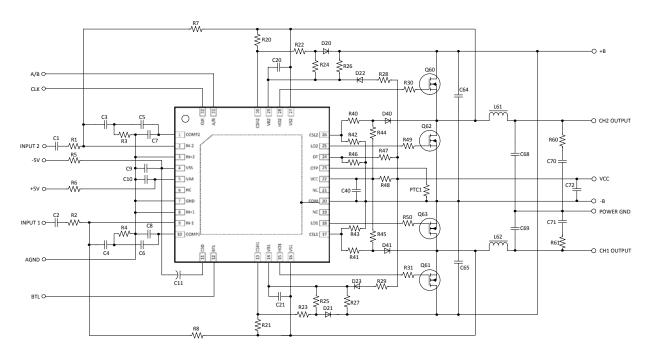


Description

The IRS2452AM integrates two channels of high voltage, high performance Class D audio amplifier drivers with PWM modulators and protections. In conjunction with external MOSFET, the IRS2452AM forms a complete 2 channel Class D audio amplifier. The IRS2452AM is designed with floating analog inputs and protection control interface pins convenient for half bridge applications. High and low side MOSFET are protected from over current conditions by a programmable over current protection. Essential elements of PWM modulator section allow flexible system design. A small MLPQ 7x7mm package enhances the benefit of smaller size of Class D topology. The IRS2452AM is a lead-free, ROHS compliant.


Qualification Information[†]

Qualification information				
		Industrial ^{††}		
Qualification Level		Comments: This family of ICs has passed JEDEC's Industrial		
Qualification L	evei	qualification. IR's Consumer qualification level is granted by		
		extension of the higher Industrial level.		
		The state of the s		
Moisture Sensi	tivity Level	MSL2 _{†††} , 260°C		
Wioisture Serisi	tivity Level	(per IPC/JEDEC J-STD-020)		
	Machine Model	Class B		
	Wacilile Wodel	(per JEDEC standard EIA/JESD22-A115)		
ESD	Lluman Bady Madel	Class 1B		
ESD	Human Body Model	(per EIA/JEDEC standard JESD22-A114)		
	Charge Davise Medal	Class 0B		
	Charge Device Model	(per EIA/JEDEC standard JESD22-C101)		
IC Latch-Up Te	C	Class I, Level A		
ic Laten-up re	51	(per JESD78)		
RoHS Complian	nt	Yes		

- † Qualification standards can be found at Infineon web site http://www.infineon.com/product-info/reliability/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your Infineon Technology sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your Infineon Technology sales representative for further information.

Typical Connection Diagram

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM; all currents are defined positive into any lead. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V_{Bn}	High side floating supply voltage	-0.3	415	V
V _{Sn}	High side floating supply voltage ^{††} , n=1-2	V _{Bn} -15	V _{Bn} +0.3	V
V_{Hon}	High side floating output voltage, n=1-2	V _{Sn} -0.3	V _{Bn} +0.3	V
V _{CSHn}	CSH pin input voltage, n=1-2	V _{Sn} -0.3	V _{Bn} +0.3	V
V _{CC}	V _{CC} low side fixed supply voltage ^{††}	-0.3	15.5	V
V_{Lon}	Low side output voltage, n=1-2	-0.3	V _{CC} +0.3	V
V_{AA}	Floating input positive supply voltage ^{††}	(See I _{AAZ})	210	V
V_{SS}	Floating input negative supply voltage ^{††}	-1 (See I _{SSZ})	V _{AA} +0.3	V
V_{GND}	Floating input supply ground voltage	V _{SS} -0.3	V _{AA} +0.3	V
I _{IN-n}	Inverting input current [†] , n=1-2	-	±3	mA
V_{CSD}	SD pin input voltage	V _{GND} -0.3	V _{AA} +0.3	V
V_{COMPn}	COMP pin input voltage, n=1-2	V _{SS} -0.3	V _{AA} +0.3	V
V_{CLK}	CLK pin input voltage	V _{SS} -0.3	V _{AA} +0.3	V
V_{BTL}	BTL pin input voltage	V _{SS} -0.3	V _{AA} +0.3	V
V_{AB}	A/B pin input voltage	V _{SS} -0.3	V _{AA} +0.3	V
V_{DT}	DT pin input voltage	-0.3	V _{CC} +0.3	V
V _{OTP}	OTP pin input voltage	-0.3	V _{CC} +0.3	V
V _{CSLn}	CSL pin input voltage, n=1-2	-0.3	V _{CC} +0.3	V
I _{AAZ}	Floating input positive supply zener clamp current ^{††}	-	10	mA
I _{CCZ}	Low side V _{CC} supply zener clamp current ^{††}	-	10	mA
I _{BSZn}	Floating supply zener clamp current ^{††} , n=1-2	-	10	mA
dV _{Sn} /dt	Allowable Vs voltage slew rate, n=1-2	-	50	V/ns
dV _{SS} /dt	Allowable Vss voltage slew rate ^{†††}	-	50	V/ms

Absolute Maximum Ratings (Cont'd)

Symbol	Definition	Min.	Max.	Units
Pd	Maximum power dissipation @ T _A ≤ +25°C ^{††††}	-	6	W
Rth _{JA}	Thermal resistance, Junction to ambient ^{††††}	-	20	°C/W
TJ	Junction Temperature	-	150	°C
Ts	Storage Temperature	-55	150	°C
TL	Lead temperature (Soldering, 10 seconds)	-	300	°C

- IN-1 and IN-2 contain clamping diode to GND.
- † †† VAA-VSS, VCC-COM, VB1-VS1 and VB2-VS2 contain internal shunt zener diodes. Note that the voltage ratings of these can be limited by the clamping current. For the rising and falling edges of step signal of 10V. VSS=15V to 200V. According to JESD51-5. JEDEC still air chamber.
- †††
- **††††**

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions below. The Vs and COM offset ratings are tested with supplies biased at V_{AA} - V_{SS} =10V, V_{CC} =12V, COM2=COM and V_{B} - V_{S} =12V. All voltage parameters are absolute

voltages referenced to COM; all currents are defined positive into any lead.

Symbol	Definition	Min.	Max.	Units
V_{Bn}	High side floating supply absolute voltage, n=1-2	V _{Sn} +10	V _{Sn} +14	V
V _{Sn}	High side floating supply offset voltage	(Note1)	400	V
V _{AA}	Floating input supply voltage	V _{SS} + 4.5	V _{SS} + 15	V
I _{AAZ}	Floating input positive supply zener clamp current	1	11	mA
Vss	Floating input supply absolute voltage	0	200	V
V_{Hon}	High side floating output voltage, n=1-2	Vs	V _B	V
V _{CC}	Low side fixed supply voltage	10	14	V
V_{Lon}	Low side output voltage, n=1-2	0	V _{CC}	V
V_{GND}	GND pin input voltage	V _{SS} ^(Note2)	V _{AA} ^(Note2)	V
V _{IN-n}	Inverting input voltage, n=1-2	V _{GND} -0.5 ^(Note2)	V _{GND} +0.5 ^(Note2)	V
V _{CSD}	CSD pin input voltage	V_{GND}	V _{AA}	V
V_{COMPn}	COMP pin input voltage, n=1-2	V _{SS}	V_{AA}	V
C_{COMPn}	COMP pin phase compensation capacitor to GND, n=1-2	2.2	-	nF
V _{CLK}	CLK pin input voltage	V_{GND}	V _{AA}	V
V_{BTL}	BTL pin input voltage	V _{SS}	V _{AA}	V
V_{AB}	A/B pin input voltage	V _{SS}	V _{AA}	V
V_{DT}	DT pin input voltage	0	V _{CC}	V
V _{OTP}	OTP pin input voltage	0	V _{CC}	V
V_{CSHn}	CSH pin input voltage, n=1-2	V _{Sn}	V _{Bn}	V
V_{CSLn}	CSL pin input voltage, n=1-2	0	Vcc	V
dV _{SS} /dt	IV _{SS} /dt Allowable V _{SS} voltage slew rate upon power-up ^(Note3)		50	V/ms
f _{SW}	Switching frequency	-	800	kHz
f _{CLK}	CLK frequency ^(Note4)	-	800	kHz
T _A	Ambient Temperature	-40	125	°C

⁽Note 1) Logic operational for Vsn equal to -5V to +400V. Logic state held for Vsn equal to -5V to -VBSn.

⁽Note 2) GND input voltage is limited by IIN-n.

⁽Note 3) Vss ramps up from 0V to 200V.

⁽Note 4) The CLK input frequency needs to be within +/-10% of self-oscillating frequency in order to synchronize PWM in a typical self-oscillating application.

Electrical Characteristics

 $V_{CC} = V_{BS1} = V_{BS2} = V_{DT} = 12V, \ V_{SS} = V_{S1} = V_{S2} = COM = 0V, \ V_{GND} = 5V, \ V_{AA} = V_{BTL} = V_{AB} = 10V, \ C_L = 1nF \ and \ T_A = 25^{\circ}C \ unless \ otherwise specified.$

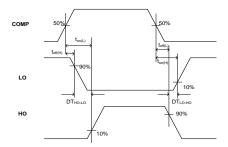
ecified.	T				1	
Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Low Side						
UV _{CC+}	Vcc supply UVLO positive threshold	8.4	8.9	9.4	V	
UV _{CC-}	Vcc supply UVLO negative threshold	8.2	8.7	9.2	V	
UV _{CCHYS}	UV _{CC} hysteresis	-	0.2	-	V	
I _{QCC}	Low side quiescent current	-	-	6	mA	$V_{DT}=V_{CC}$
V _{CLAMPL}	Low side zener diode clamp voltage	14.7	15.3	16.2	V	I _{CC} =5mA
High Side	Floating Supply					
UV _{BS+n}	High side well UVLO positive threshold, n=1-2	8.0	8.5	9.0	V	
UV _{BS-n}	High side well UVLO negative threshold, n=1-2	7.8	8.3	8.8	V	
UV _{BSHYSn}	UV _{BS} hysteresis, n=1-2	-	0.2	-	V	
I _{QBSn}	High side quiescent current, n=1-2	-	-	1	mA	
I _{LKHn}	High to Low side leakage current, n=1-2	-	-	50	μA	V _{Bn} =V _{Sn} =400V
V _{CLAMPHn}	High side zener diode clamp voltage, n=1-2	14.7	15.3	16.2	V	I _{BSn} =5mA
Floating Ir	nput Supply					
UV _{AA+}	V _{AA} floating supply UVLO positive threshold from V _{SS}	8.2	8.7	9.2	V	GND pin floating
UV _{AA-}	V _{AA} floating supply UVLO negative threshold from V _{SS}	7.7	8.2	8.7	V	GND pin floating
UV _{AAHYS}	UV _{AA} hysteresis	-	0.5	-	V	GND pin floating
I _{QAASD}	Floating Input positive quiescent supply current in shutdown mode	-	2.5	4	mA	V _{CSD} =V _{GND}
I _{QAA0}	Floating Input positive quiescent supply current, positive input	-	8	11	mA	V _{IN-} = VSS+5.2V
I _{QAA1}	Floating Input positive quiescent supply current, negative input	-	5	8	mA	V _{IN-} = VSS+4.8V
I _{QAAST}	Floating Input positive quiescent supply current in start-up mode	-	6	8	mA	$V_{CSD} = V_{GND} + 2.5V$
I _{QAABTL}	Floating Input positive quiescent supply current, negative input	-	5	8	mA	V _{IN-} = VSS+4.8V, VBTL=GND
I _{LKM}	Floating input side to Low side leakage current	-	-	50	μA	$V_{AA}=V_{SS}=V_{GND}=$ 100V
V _{CLAMPM}	Floating supply zener diode clamp voltage	14.7	15.3	16.2	V	I_{AA} =5mA, V_{CSD} = V_{GND}

Electrical Characteristics (Cont'd)

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Audio Inpu	ut (GND=0V, VAA=5V, VSS=-5V, COM =	V_{CC} =-5V, V	S1=VS2=CS	H1=CSH2=	-5V, DT=-5	iV)
V_{Osn}	CHn input offset voltage, n=1-2	-18	0	18	mV	
I_{BINn}	CHn input bias current, n=1-2	-	-	40	nA	
GBWn	CHn small signal bandwidth, n=1-2	-	5 Note 1	-	MHz	C _{COMPn} =2.2nF, Rfn=10k, Note 1
V_{COMPn}	CHn OTA Output voltage, n=1-2	V _{AA} -1	-	V _{SS} +1	V	
g _{mn}	CHn OTA transconductance, n=1-2	80	200	260	mS	V _{IN-n} =10mV
G _{Vn}	CHn OTA gain, n=1-2	60	-	-	dB	
V_{Nrmsn}	CHn OTA input noise voltage, n=1-2	-	250	-	mVrms	BW=20kHz, Resolution BW=22Hz Fig.5
SRn	CHn slew rate, n=1-2	-	±5	-	V/us	C _{COMPn} =2.2nF
CMRRn	CHn common-mode rejection ratio, n=1-2	-	60	-	dB	
PSRRn	CHn supply voltage rejection ratio, n=1-2	-	65	-	dB	
PWM Com	parator	•	•	•	·	•
Vth _{PWM}	PWM comparator threshold in COMP	-	(V _{AA} – V _{SS})/2	-	V	
f _{OTAn}	CHn COMP pin star-up local oscillation frequency, n=1-3	-	0.6	-	MHz	V _{CSD} =V _{GND} +2.5V
Clock Inpu	t (GND=0V, VAA=5V, VSS=-5V, COM =V	$V_{CC} = -5V, V_S$	S1=VS2=CSF	11=CSH2=-	5V, DT=-5	V)
V _{IHCLK}	CLK high level input threshold	8		-	V	
V _{ILCLK}	CLK low level input threshold	-		2	V	
I _{IHCLK+}	CLK high level input bias current	-35		35	μΑ	$V_{CLK}=V_{AA}$
I _{ILCLK} -	CLK low level input bias current	-45		45	μΑ	V _{CLK} =V _{SS}
V_{THAB}	AB high level input threshold	0.40x (V _{AA} - GND)	0.50x (V _{AA} - GND)	0.60x (V _{AA} - GND)	V	
I _{IHAB+}	AB high level input bias current	-35		35	μA	V _{AB} =V _{AA}
I _{ILAB} -	AB high level input bias current	-45		45	μA	V _{AB} =GND
	(GND=0V, V_{AA} =5V, V_{SS} =-5V, COM = V_{C}		=V _{S2} =CSH1			
V_{THBTL}	BTL high level input threshold	0.40x (V _{AA} -	0.50x (V _{AA} -	0.60x (V _{AA} -	V	
I _{IHBTL+}	BTL high level input bias current	GND) -35	GND)	GND) 35	μA	V _{BTL} =V _{AA}
I _{ILBTL} -	BTL high level input bias current	-45		45	μA	V _{BTL} =GND
ILBIL-	Die nigniever input bias current	-∓5	l	70	μΛ	ARIT-OMD

Electrical Characteristics (Cont'd)

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Protection		•	•			
Vth _{OCLn}	CHn low side OC threshold in V _{CSLn} , n=1-2	1.1	1.2	1.3	V	
Vth _{OCHn}	CHn high side OC threshold in V _{CSHn} , n=1-2	1.1+ Vs	1.2+ Vs	1.3+ Vs	V	Vs=400V
Vth1	CSD pin shutdown release threshold	0.52xV _{AA-GND}	0.68xV _{AA-GND}	$0.84xV_{AA-GND}$	V	
Vth2	CSD pin self reset threshold	$0.26xV_{AA-GND}$	$0.30 {\rm xV}_{\rm AA-GND}$	$0.34xV_{AA-GND}$	V	
I _{CSD+}	CSD pin discharge current	70	100	130	μA	$V_{CSD} = V_{GND} + 2.4V$
I _{CSD} -	CSD pin charge current	70	100	130	μA	$V_{CSD} = V_{GND} + 2.4V$
t _{SSDn}	CHn shutdown propagation delay from $V_{CSD} < V_{GND} + Vth1$ to Shutdown, n=1-2	-	140	250	ns	
t _{OCHn}	CHn propagation delay time from V _{CSHn} > Vth _{OCHn} to Shutdown, n=1-2	-	400	500	ns	
t _{OCLn}	CHn propagation delay time from Vsn> Vth _{OCL} to Shutdown, n=1-2	-	270	350	ns	
V _{OTP}	OTP pin input threshold	-	2.8	-	V	
I _{OTP}	OTP bias sourcing current	-	0.6	-	mΑ	OTPn=0V


Electrical Characteristics (Cont'd)

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Gate Drive	r	I.				
lo+n	CHn output high short circuit current (Source), n=1-2	-	0.5	-	Α	Vo=0V, PW≤10µS, Note 1
lo-n	CHn output low short circuit current (Sink) , n=1-2	-	0.6	-	Α	Vo=12V, PW <u><</u> 10µS, Note 1
V_{OLn}	CHn low level out put voltage LO – COM, HO - VS, n=1-2	-	-	0.1	V	Io=0A
V_{OHn}	CHn high level out put voltage VCC – LO, VB - HO, n=1-2	-	-	1.4	V	
Ton0n	CHn high and low side turn-on propagation delay, n=1-2	-	385	-	ns	$V_{DT} = V_{CC}$
Toff0n	CHn high and low side turn-off propagation delay, n=1-2	270	340	410	ns	VDI – VCC
Toffskwn	CHn Toff skew, Toffhon – Tofflon, n=1-2	-30	0	30	ns	
tr	Turn-on rise time	-	12	25	ns	
tf	Turn-off fall time	-	12	25	ns	
DT1n	CHn deadtime: LOn turn-off to HOn turn-on (DT _{LO-HO}) & HOn turn-off to LnO turn-on (DT _{HO-LO})	30	45	65	ns	V _{DT} >V _{DT1} , V _{DTM} =COM
DT2n	CHn deadtime: LOn turn-off to HOn turn-on (DT _{LO-HO}) & HOn turn-off to LOn turn-on (DT _{HO-LO})	45	65	85	ns	V _{DT1} >V _{DT>} V _{DT2} , V _{DTM} =COM
DT3n	CHn deadtime: LOn turn-off to HOn turn-on (DT _{LO-HO}) & HOn turn-off to LOn turn-on (DT _{HO-LO})	60	85	110	ns	V _{DT2} >V _{DT} > V _{DT3} , V _{DTM} =COM
DT4n	CHn deadtime: LOn turn-off to HOn turn-on (DT _{LO-HO}) & HO turn-off to LOn turn-on (DT _{HO-LO})V _{DT} = V _{DT4}	80	105	145	ns	V _{DT} <v<sub>DT3, V_{DTM}=COM</v<sub>
V_{DT1}	DT mode select threshold 1	0.51xVcc	0.57xVcc	0.63xVcc	V	
V_{DT2}	DT mode select threshold 2	0.32xVcc	0.36xVcc	0.40xVcc	V	V _{DTM} =COM
V_{DT3}	DT mode select threshold 3		0.23xVcc	0.25xVcc	V	

Note 1 Guaranteed by design, but not tested in production.

Waveform Definitions

Figure 1 Switching Time Waveform Definitions

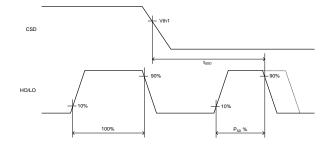


Figure 2 CSD to Shutdown Waveform Definitions

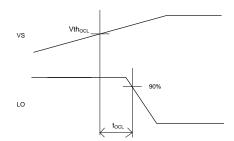


Figure 3 V_S > Vth_{OCL} to Shutdown Waveform

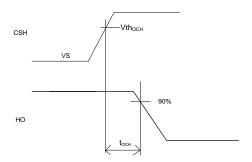


Figure 4 V_{CSH} > Vth_{OCH} to Shutdown Waveform

Waveform Definitions (Cont'd)

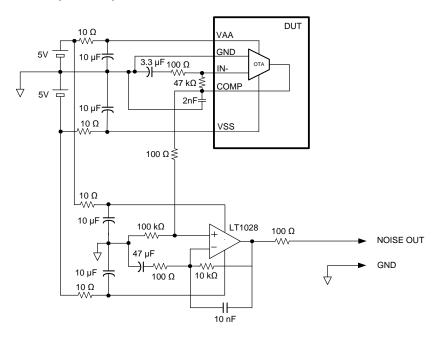
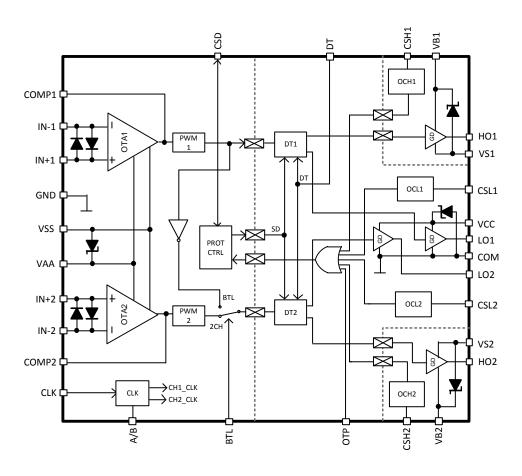
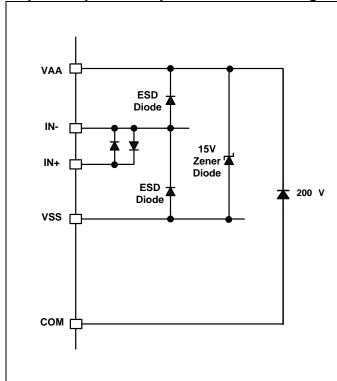
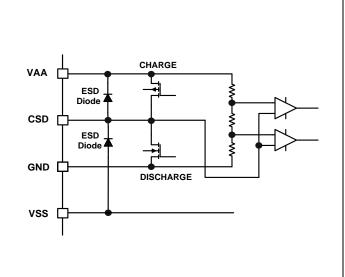
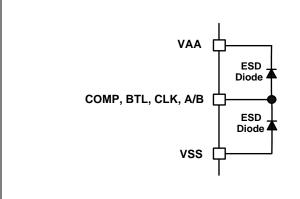
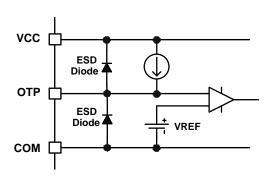



Figure 5: OTA input noise voltage mesurent circuit

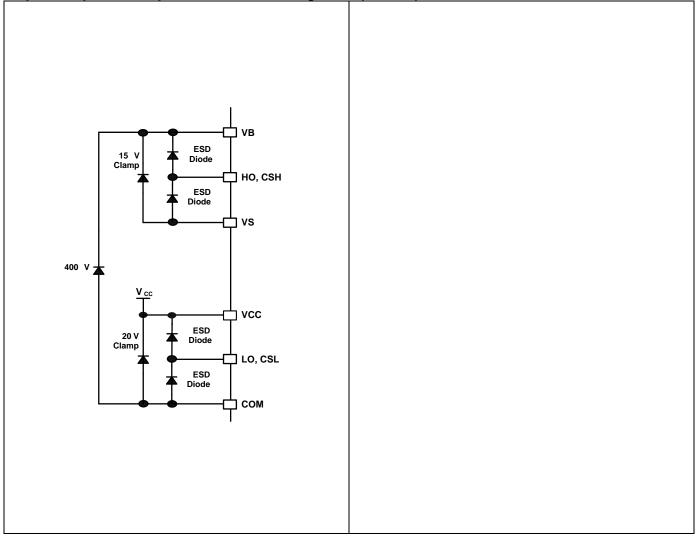



Functional Block Diagram

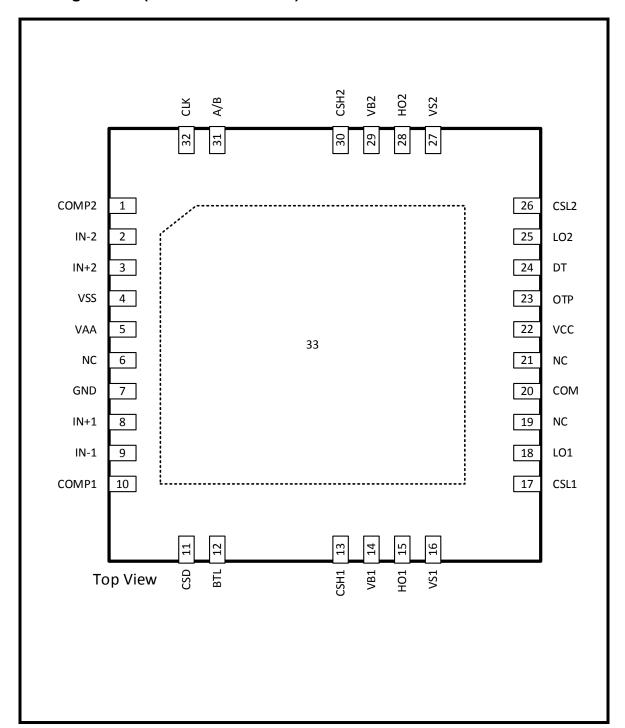




Input/Output Pin Equivalent Circuit Diagrams

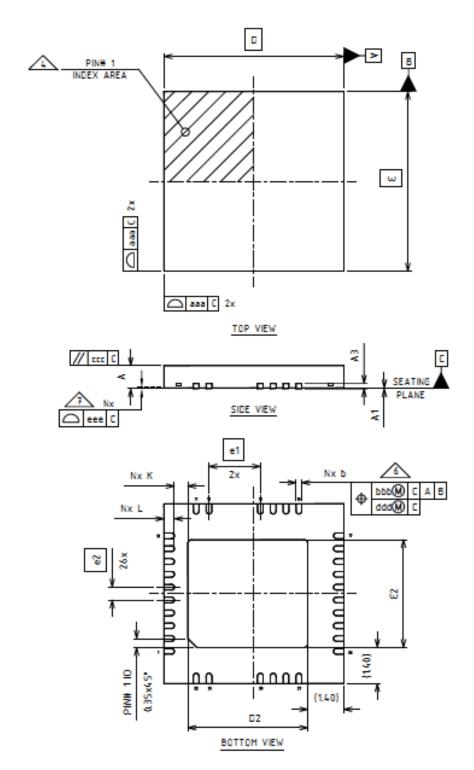


Input/Output Pin Equivalent Circuit Diagrams (Cont'd)



Lead Definitions

Pin#	Symbol	1/0	Description
1	COMP2	0	CH2 PWM comparator input
2	IN-2	I	CH2 inverting analog input
3	IN+2		CH2 non-inverting analog input
4	VSS	<u> </u>	Floating input negative supply
5	VAA	1	Floating input positive supply
6	NC	<u>'</u>	r roaming input positive capping
7	GND	1 1	Input reference GND
8	IN+1	<u> </u>	CH1 non-inverting analog input
9	IN-1	 	CH1 inverting analog input
10	COMP1	0	CH1 PWM comparator input
11	CSD	I/O	Protection control
12	BTL	1/0	BTL mode select (VAA: 2CH mode, GND-VSS: BTL mode)
13	CSH1	<u> </u>	CH1 High side over current sensing input, referenced to VS1
14	VB1	<u> </u>	CH1 High side floating supply
15	HO1	0	CH1 High side output
16	VS1	i	CH1 High side floating supply return
17	CSL1	i	CH1 Low side over current sensing input, referenced to COM
18	LO1	0	CH1 Low side output
19	NC	<u> </u>	'
20	COM		Low side gate drive supply return
21	NC		3 11 7
22	VCC	1	Low side gate drive supply
23	OTP	ı	OTP sensor input
24	DT	ı	Deadtime program, reference to COM
25	LO2	0	CH2 Low side output
26	CSL2	I	CH2 Low side over current sensing input, referenced to COM
27	VS2	I	CH2 High side floating supply return
28	HO2	0	CH2 High side output
29	VB2	I	CH2 High side floating supply
30	CSH2	I	CH2 High side over current sensing input, referenced to VS2
31	A/B	I	Clock phase select (VAA: In-phase, VSS: Out-of-phase)
32	CLK	I	Clock input, reference to GND
33	SUB	I	Internally connected to COM (Do not use as supply return)



Lead Assignments (MLPQ_7x7mm_32L)

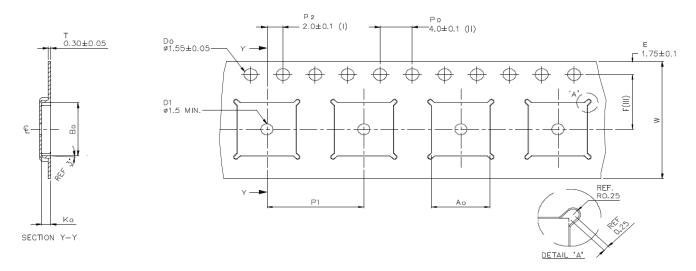
Package Details:

	Dimension Table					
\ \ \ \	>					
nicko.		V		NOTE		
Thickness Symbol	MINIMUM	NOMINAL	MAXIMUM	NOTE		
. \						
A	0.80	0.90	1.00			
A1	0.00	0.02	0.05			
A3		0.203 Ref				
Ь	0.18	0.25	0.30	6		
0		7.00 BSC				
E		7.00 BSC				
e1		2.00 BSC				
e2		0.50 BSC				
D2	4.525	4.675	4.775			
E2	4.05	4.20	4.30			
K	0.20					
L	0.30	0.40	0.50			
999		0.05				
999		0.10				
ccc		0.10				
ddd		0.05				
eee						
N		3				
ND		5				
NE	10			5		
NOTES	1, 2					
LF DWG NO.		B-4396				
REV.		1				

NOTE:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.

4. The location of the marked terminal #1 identifier is within the hatched area.


5. ND and NE refer to the number of terminals on each D and E side respectively.

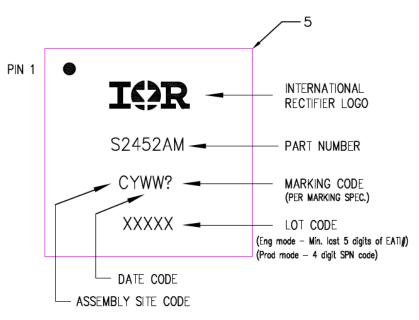
6. Dimension b applies to metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.

1 Coplanarity applies to the terminals and all other bottom surface metallization.

Tape and Reel Details:

Αo	7.25 +/-0.1
Во	7.25 +/-0.1
Κ٥	1.10 +/-0.1
F	7.50 +/-0.1
P1	12.00 +/-0.1
W	16.00 +/-0.3

- Measured from centreline of sprocket hole to centreline of pocket.
- (II) Cumulative tolerance of 10 sprocket holes is ± 0.20 .
- (III) Measured from centreline of sprocket hole to centreline of pocket.
- (IV) Other material available.
- (V) Typical SR of form tape Max 10⁹ OHM/SQ


ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Board Mounting Information

Reliability of products in PQFN package is subject to board mounting process. Soldering process is critical. Refer to Application Note AN-1170 Audio Power Quad Flat No-Lead (PQFN) Board Mounting Application Note for specific soldering methods.

Part Marking Information

TOP MARKING (LASER)

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie") . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.