

Truth Table (Positive Logic)

Input	Output
Н	L
L	Н

ELECTRICAL CHARACTERISTICS

INPUT (T_A = -40°C to 85°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward Voltage	$V_{\rm F}$	$I_{\rm F} = 10 {\rm mA}, T_{\rm A} = 25 {\rm ^{\circ}C}$		1.4	1.8	V
Reverse Voltage	V _R	$I_R = 10 \mu A$	5.0			V
Temperature Coefficient	$\Delta V_F / \Delta T_A$	$I_F = 10 m A$		-1.8		mV/°C
Input Capacitance	C _{IN}	$V_F = 0V, f = 1MHz$		60		pF

OUTPUT (T_A = -40°C to 85°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
High Level Supply Current	I _{CCH}	$I_{\rm F} = 0 {\rm mA}, V_{\rm CC} = 5.5 {\rm V}$		12.5	18	mA
Low Level Supply Current	I _{CCL}	$I_F = 10 \text{mA}, V_{CC} = 5.5 \text{V}$		14.5	21	mA

COUPLED (T_A = -40°C to 85°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
High Level Output Current	I _{OH}	$V_{CC} = 5.5V, V_0 = 5.5V,$ $I_F = 250\mu A$		2.1	100	μΑ
Low Level Output Voltage	V _{OL}	$V_{CC} = 5.5V, I_F = 5mA,$ $I_{CL} = 13mA$		0.35	0.6	V
Input Threshold Current	I _{FT}	$V_{CC} = 5.5V, V_0 = 0.6V,$ $I_{OL} = 13mA$		2.5	5	mA

ELECTRICAL CHARACTERISTICS

ISOCOM

COMPONENTS

Switching Characteristics ($T_A = -40^{\circ}C$ to 85°C, $V_{CC} = 5V$, $I_F = 7.5mA$ unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.	Мах	Unit
Propagation Delay Time to Output High Level	t _{PLH}	$C_{L} = 15 \text{pF}, R_{L} = 350\Omega,$ $T_{A} = 25^{\circ}\text{C}$		35	100	ns
Propagation Delay Time to Output Low Level	t _{PHL}	$C_{L} = 15 \text{pF}, R_{L} = 350\Omega,$ $T_{A} = 25^{\circ}\text{C}$		40	100	ns
Pulse Width Distortion	t _{PHL} - t _{PLH}	$C_L = 15 pF, R_L = 350\Omega$		5	35	ns
Output Rise Time	t _r	$C_L = 15 pF, R_L = 350 \Omega$		40		ns
Output Fall time	$t_{\rm f}$	$C_L = 15 pF, R_L = 350 \Omega$		10		ns
Common Mode Transient Immunity at Logic High	CM _H	ICPL2630 ICPL2631 $I_F = 0mA, V_{CM} = 1kVp-p, V_{OH} = 2.0V, R_L = 350\Omega, T_A = 25°C$	5000 10000	20000		V/µs
Common Mode Transient Immunity at Logic Low	CML	ICPL2630 ICPL2631 $I_F = 7.5 \text{mA}, V_{CM} = 1 \text{kVp-p}, V_{OL} = 0.8 \text{V}, R_L = 350 \Omega, T_A = 25^{\circ}\text{C}$	5000 10000	20000		V/µs

Notes :

- 1. The V_{CC} supply must be bypassed by a 0.1μ F capacitor or larger with good high frequency characteristic and should be connected as close as possible to the package V_{CC} and Gnd pins.
- 2. t_{PLH}- Propagation delay is measured from the 3.75mA level on the HIGH to LOW transition of the input current pulse to the 1.5 V level on the LOW to HIGH transition of the output voltage pulse.
- 3. t_{PHL}- Propagation delay is measured from the 3.75mA level on the LOW to HIGH transition of the input current pulse to the 1.5 V level on the HIGH to LOW transition of the output voltage pulse.
- 4. t- Rise time is measured from the 10% to the 90% levels on the LOW to HIGH transition of the output pulse.
- 5. t_{f} Fall time is measured from the 90% to the 10% levels on the HIGH to LOW transition of the output pulse.
- CM_H- The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the HIGH state (i.e., V_{OUT} > 2.0V).
- 7. CM_L– The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the LOW output state (i.e., V_{OUT} < 0.8V).

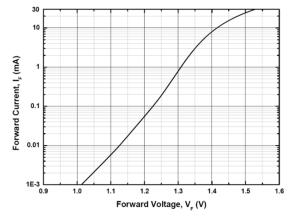


Fig 1 Forward Current vs Forward Voltage

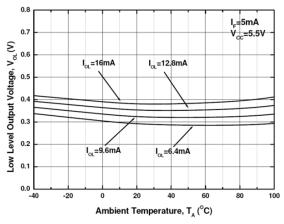
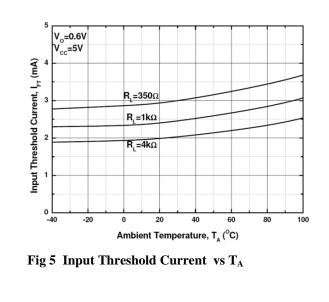
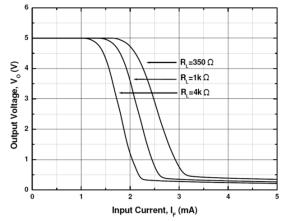
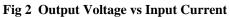





Fig 3 Low Level Output Voltage vs T_A

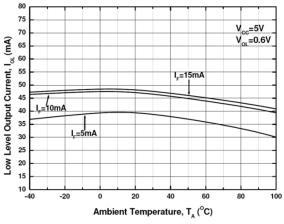
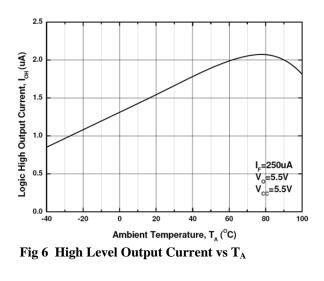



Fig 4 Low Level Output Current vs T_A

ISOCOM

ICPL2630 / ICPL2631

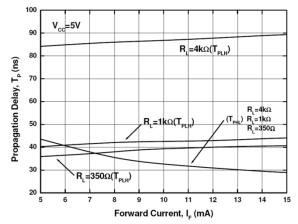


Fig 7 Propagation Delay vs Forward Current

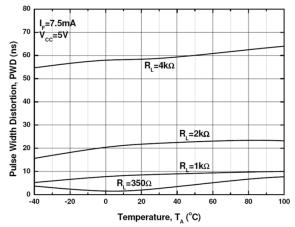
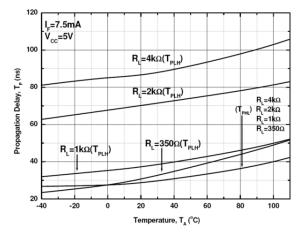



Fig 9 Pulse Width Distortion vs T_A

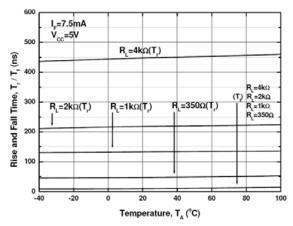
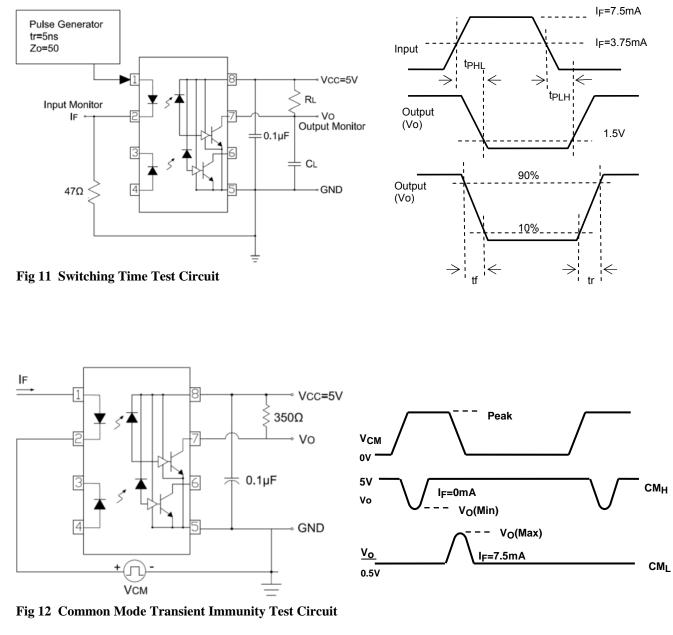
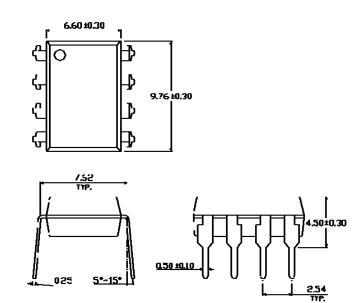
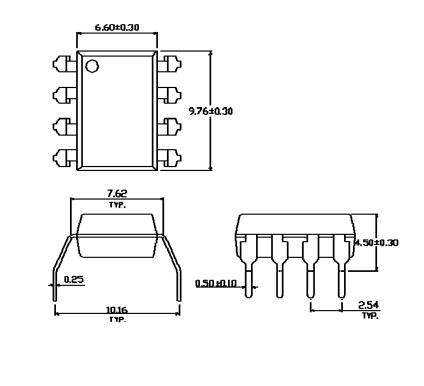



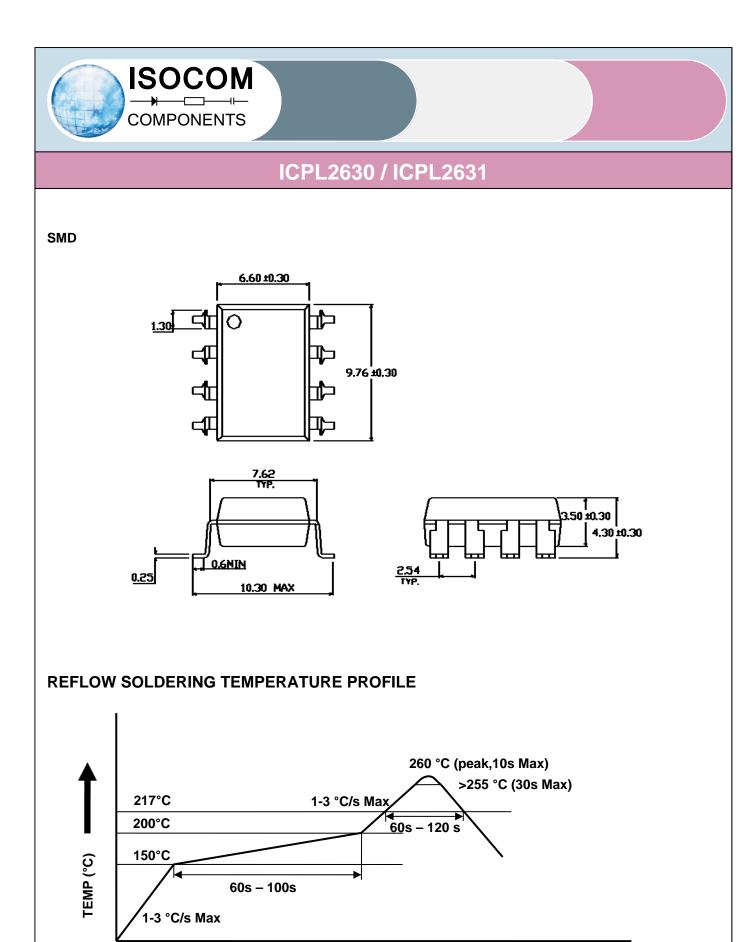
Fig 10 Rise Time and Fall Time vs $T_{\rm A}$

ORDER INFORMATION


ICPL2630, ICPL2631

After PN	Description	Packing quantity
None	Standard DIP8	50 pcs per tube
G	10mm Lead Spacing	50 pcs per tube
SM	Surface Mount	50 pcs per tube
SMT&R	Surface Mount Tape & Reel	1000 pcs per reel




PACKAGE DIMENSIONS (mm)

DIP

G FORM

TIME (s)