
Functional Block Diagram

Typical Application Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings†

Low-voltage Supply Voltage, V _{DD}	′ to +6V
High-voltage Supply Voltage, V _{PP}	
Logic Input Levels	
Operating Ambient Temperature, T _A —40°C to	
Storage Temperature, T _S —65°C to	
Continuous Total Power Dissipation:	
40-lead PDIP (Note 1, Note 2)	200 mW
44-lead PLCC (Note 1, Note 2)	

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

- Note 1: Duty cycle is limited by the total power dissipated in the package.
 - 2: For operations above 25°C ambient, derate linearly to 85°C at 20 mW/°C.

RECOMMENDED OPERATING CONDITIONS

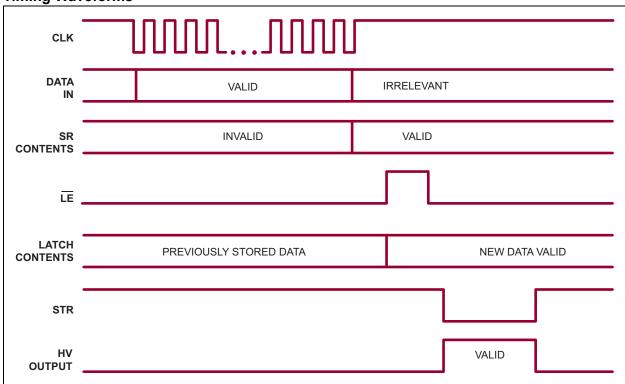
Electrical Specifications: T _A = 25°C unle	ess other	wise indi	cated.			
Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Logic Supply Voltage	V_{DD}	4.5	_	5.5	V	
High-voltage Supply Voltage	V_{PP}	8		80	٧	
High-level Input Voltage	V _{IH}	3.5		I	>	V _{DD} = 4.5V (See Figure 3-1.)
Low-level Input Voltage	V_{IL}	l		1	>	V _{DD} = 4.5V (See Figure 3-1.)
High-level Output Current	I _{OH}	-25			mA	
Low-level Output Current	I _{OL}			2	mΑ	
Clock Frequency	f _{CLK}	_	_	6	MHz	V _{DD} = 4.5V (See Figure 3-1.)
Pulse Duration, Clock High	t _{W(CKH)}	83			ns	V _{DD} = 4.5V
Pulse Duration, Clock Low	t _{W(CKL)}	83			ns	V _{DD} = 4.5V
Setup Time, Data before Clock	t _{SU}	75	_	1	ns	V _{DD} = 4.5V
Hold Time, Data after Clock	t _H	75			ns	V _{DD} = 4.5V
Operating Ambient Temperature	T _A	-40	_	+85	°C	

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Over recommended operating conditions unless otherwise indicated										
Parameter		Sym.	Min.	Тур.	Max.	Unit	Conditions			
Supply Current		I _{DD}		_	10	mA	V_{DD} = 5V, f_{CH} = 6 MHz			
Quiescent Supply Current		I_{DDQ}	_	_	0.5	mA	V _{DD} = 5.5V, V _{IN} = 0V			
			_	_	12	mΑ	Outputs high, T _A = -40°C			
Supply Current	I _{PP}	_	7	10	mA	Outputs high, T _A = 0°C to +85°C				
			_	_	500	μΑ	Outputs low			
HV Operating Current	HV Output		70	_	_	V	I _{OH} = –25mA			
HV _{IN} Operating Current	Serial Output	V_{OH}	4.5	4.9	5	V	$V_{DD} = 5V, I_{OH} = -20 \mu A$			
IV Operating Current	HV Output	W	_	_	5	V	I _{OL} = 1 mA			
LV _{IN} Operating Current	Serial Output	V_{OL}	_	0.06	8.0	V	I _{OL} = 20 μA			
Logic Input Current High		I _{IH}	_	0.1	1	μA	$V_{IH} = V_{DD}$			
Logic Input Current Low		I _{IL}	_	-0.1	-1	μΑ	V _{IL} = 0V			

Note 1: The power dissipation is determined by the number of output at ON state and their duty cycles. The total power must not exceed the allowable package power dissipation.

SWITCHING CHARACTERISTICS


Electrical Specifications : V_{PP} = 80V, C_L = 50 pF and T_A = 25°C unless otherwise noted.										
Parameter			Min.	Тур.	Max.	Unit	Conditions			
Delay Time, Clock-to-data Output			_		600	ns	C _L = 15 pF (See Figure 3-2.)			
Delay Time, High-to-low	From Latch Enable		_		1.5	μs	V _{DD} = 4.5V (See Figure 3-3.)			
Level, HV Output	From Strobe	t _{DHL}	_	-	1	μs	V _{DD} = 4.5V (See Figure 3-4.)			
Delay Time, Low-to-high	From Latch Enable		_		1.5	μs	V _{DD} = 4.5V (See Figure 3-3.)			
Level, HV Output	From Strobe	t _{DLH}	_		1	μs	V _{DD} = 4.5V (See Figure 3-4.)			
Transition Time, High-to-low Level, HV Output			_	-	3	μs	V _{DD} = 4.5V (See Figure 3-4.)			
Transition Time, Low-to-high Level, HV Output			_	_	2.5	μs	V _{DD} = 4.5V (See Figure 3-4.)			

TEMPERATURE SPECIFICATIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
TEMPERATURE RANGE						
Operating Ambient Temperature	T _A	-40		+85	°C	
Storage Temperature	T _S	-65	_	+150	°C	
PACKAGE THERMAL RESISTANCE						
40-lead PDIP		_	39	_	°C/W	
44-lead PLCC	θ_{JA}	_	37	_	°C/W	

HV518

Timing Waveforms

2.0 PIN DESCRIPTION

The details on the pins of HV518 40-lead PDIP and 44-lead PLCC are listed on Table 2-1 and Table 2-2, respectively. Refer to **Package Types** for the location of pins.

TABLE 2-1: 40-LEAD PDIP PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	VPP	High-voltage power supply
2	SERIAL OUT	Serial data output
3	HVOUT32	High-voltage output
4	HVOUT31	High-voltage output
5	HVOUT30	High-voltage output
6	HVOUT29	High-voltage output
7	HVOUT28	High-voltage output
8	HVOUT27	High-voltage output
9	HVOUT26	High-voltage output
10	HVOUT25	High-voltage output
11	HVOUT24	High-voltage output
12	HVOUT23	High-voltage output
13	HVOUT22	High-voltage output
14	HVOUT21	High-voltage output
15	HVOUT20	High-voltage output
16	HVOUT19	High-voltage output
17	HVOUT18	High-voltage output
18	HVOUT17	High-voltage output
19	STR	Strobe
20	GND	Ground
21	CLK	Data Shift register clock. Inputs are shifted into the Shift register on the positive edge of the clock.
22	Ш	Latch enable
23	HVOUT16	High-voltage output
24	HVOUT15	High-voltage output
25	HVOUT14	High-voltage output
26	HVOUT13	High-voltage output
27	HVOUT12	High-voltage output
28	HVOUT11	High-voltage output
29	HVOUT10	High-voltage output
30	HVOUT9	High-voltage output
31	HVOUT8	High-voltage output
32	HVOUT7	High-voltage output
33	HVOUT6	High-voltage output

HV518

TABLE 2-1: 40-LEAD PDIP PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description
34	HVOUT5	High-voltage output
35	HVOUT4	High-voltage output
36	HVOUT3	High-voltage output
37	HVOUT2	High-voltage output
38	HVOUT1	High-voltage output
39	DATA IN	Serial data input
40	VDD	Low-voltage power supply

TABLE 2-2: 44-LEAD PLCC PIN FUNCTION TABLE

Pin Number	Pin Name	Description
1	VPP	High-voltage power supply
2	SERIAL OUT	Serial data output
3	HVOUT32	High-voltage output
4	HVOUT31	High-voltage output
5	HVOUT30	High-voltage output
6	NC	No connection
7	HVOUT29	High-voltage output
8	HVOUT28	High-voltage output
9	HVOUT27	High-voltage output
10	HVOUT26	High-voltage output
11	HVOUT25	High-voltage output
12	HVOUT24	High-voltage output
13	HVOUT23	High-voltage output
14	HVOUT22	High-voltage output
15	HVOUT21	High-voltage output
16	HVOUT20	High-voltage output
17	HVOUT19	High-voltage output
18	NC	No connection
19	HVOUT18	High-voltage output
20	HVOUT17	High-voltage output
21	STR	Strobe
22	GND	Ground
23	CLK	Data Shift register clock. Inputs are shifted into the Shift register on the positive edge of the clock.
24	ĪĒ	Latch enable
25	HVOUT16	High-voltage output
26	HVOUT15	High-voltage output
27	HVOUT14	High-voltage output
28	NC	No connection

TABLE 2-2: 44-LEAD PLCC PIN FUNCTION TABLE (CONTINUED)

Pin Number	Pin Name	Description
29	NC	No connection
30	HVOUT13	High-voltage output
31	HVOUT12	High-voltage output
32	HVOUT11	High-voltage output
33	HVOUT10	High-voltage output
34	HVOUT9	High-voltage output
35	HVOUT8	High-voltage output
36	HVOUT7	High-voltage output
37	HVOUT6	High-voltage output
38	HVOUT5	High-voltage output
39	HVOUT4	High-voltage output
40	HVOUT3	High-voltage output
41	HVOUT2	High-voltage output
42	HVOUT1	High-voltage output
43	DATA IN	Serial data input
44	VDD	Low-voltage power supply

3.0 FUNCTIONAL DESCRIPTION

3.1 Parameter Measurement Information

Figure 3-1 to Figure 3-4 show parametric measurement information. For testing purposes, all input pulses have maximum rise and fall times of 30 nanoseconds.

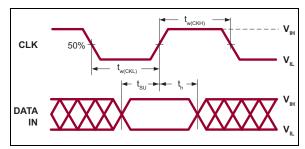
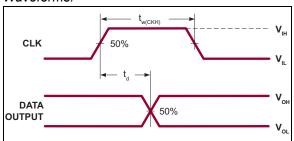



FIGURE 3-1: Input Timing Voltage Waveforms.

FIGURE 3-2: Output Timing Voltage Waveforms.

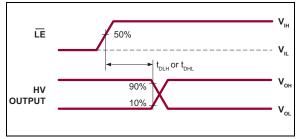
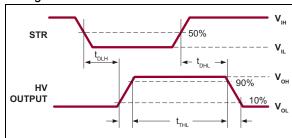



FIGURE 3-3: Latch Enable Timing Voltage Waveforms.

FIGURE 3-4: Switching-Time Voltage Waveforms.

3.2 Power-up and Power-down Sequence

Follow the steps below to power up and power down the HV518:

TABLE 3-1: POWER-UP AND POWER-DOWN SEQUENCE

	Power-up	Power-down Power-down				
Step	Description	Step	Description			
1	Connect ground.	1	Remove V _{PP} . (Note 1)			
2	Apply V _{DD} .	2	Remove all inputs.			
3	Set all inputs (Data, CLK, EN, etc.) to a known state.	3	Remove V _{DD} .			
4	Apply V _{PP} (Note 1)	4	Disconnect ground.			

Note 1: The V_{PP} should not drop below V_{DD} during operation.

TABLE 3-2: TRUTH FUNCTION TABLE

	Inputs		Outputs						
Data In	CLK	CLK Data Out Data In LE STR		STR	High-voltage Output				
Н	<u>_</u>	Н	Х	X	Н	All low			
L	<u>_</u>	L	Н	Н	L	High			
X	No change	Previous state	L	Н	L	Low			
			Х	L	L	Previous state			

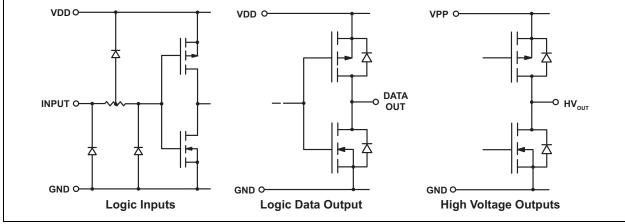
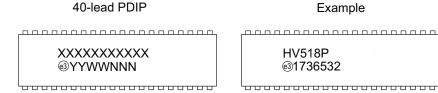
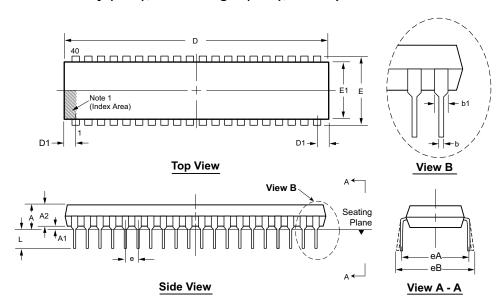




FIGURE 3-5: Input and Output Equivalent Circuits.

4.0 PACKAGE MARKING INFORMATION

4.1 Packaging Information



Legend: XX...X Product Code or Customer-specific information
Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01')
NNN Alphanumeric traceability code
Pb-free JEDEC® designator for Matte Tin (Sn)
* This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

40-Lead PDIP (.600in Row Spacing) Package Outline (P)

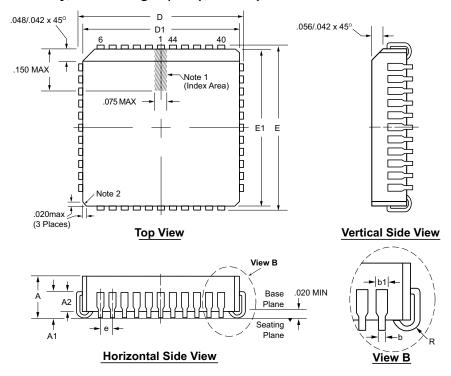
2.095x.580in body (max), .250in height (max), .100in pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	b1	D	D1	E	E1	е	eA	eВ	L
<u>.</u>	MIN	.140*	.015	.125	.014	.030	1.980	.065 [†]	.590 [†]	.485	400		.600*	.115
Dimension (inches)	NOM	-	-	-	-	-	-	-	-	-	.100 BSC	.600 BSC	-	-
(inches)	MAX	.250	.055*	.195	.023 [†]	.070	2.095	.085*	.625	.580	BSC BS		.700	.200


JEDEC Registration MS-011, Variation AC, Issue B, June, 1988.

^{*} This dimension is not specified in the JEDEC drawing.

[†] This dimension differs from the JEDEC drawing. **Drawings not to scale.**

44-Lead PLCC Package Outline (PJ)

.653x.653in body, .180in height (max), .050in pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

- A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator. Actual shape of this feature may vary.

Symbol		Α	A1	A2	b	b1	D	D1	E	E1	е	R
Dimension (inches)	MIN	.165	.090	.062	.013	.026	.685	.650	.685	.650	.050 BSC	.025
	NOM	.172	.105	-	-	-	.690	.653	.690	.653		.035
	MAX	.180	.120	.083	.021	.036 [†]	.695	.656	.695	.656		.045

JEDEC Registration MS-018, Variation AC, Issue A, June, 1993. † This dimension differs from the JEDEC drawing.

Drawings not to scale.

APPENDIX A: REVISION HISTORY

Revision A (October 2017)

- Converted Supertex Doc# DSFP-HV518 to Microchip DS20005847A
- · Changed the package marking format
- Made minor text changes throughout the document

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>XX</u>	- <u>X</u> -	X	Examples:				
Device	Package Options	Environmental	Media Type					
				a) HV518P-G:	32-Channel Vacuum Fluores- cent Display Driver,			
Device:	HV518	= 32-Channel Vacuun Driver	n Fluorescent Display		40-lead PDIP, 9/Tube			
Packages:	Р	= 40-lead PDIP		b) HV518PJ-G:	32-Channel Vacuum Fluores- cent Display Driver,			
	PJ	= 44-lead PLCC			44-lead PLCC, 27/Tube			
Environmental:	G	= Lead (Pb)-free/RoH	S-compliant Package	c) HV518PJ-G-M903:	32-Channel Vacuum Fluores- cent Display Driver,			
Media Types:	(blank)	= 9/Tube for a P Pack	age		44-lead PLCC, 500/Reel			
	(blank)	= 27/Tube for a PJ Pa	ickage					
	M903	= 500/Reel for a PJ P	ackage					
		_						

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, Anyln, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-2265-5

© 2017 Microchip Technology Inc.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277

Technical Support: http://www.microchip.com/

support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614

Fax: 678-957-1455 Austin, TX

Tel: 512-257-3370

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX

Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523

Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York. NY

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6. The Gateway

Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829

Fax: 86-24-2334-2829
China - Shenzhen

Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700 Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611

Fax: 39-0331-466781 **Italy - Padova** Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 **Norway - Trondheim** Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest

Tel: 40-21-407-87-50 Spain - Madrid

Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

Downloaded from Arrow.com.