HMC705* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC705LP4 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC705 Data Sheet

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: LP4, LP4B, LP4C, LP4K (QTR: 2013-00487 REV: 04)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES

- HMC705 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC705 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

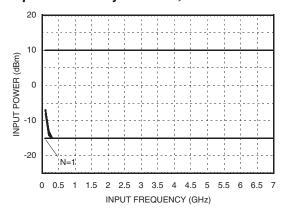
TECHNICAL SUPPORT 🖳

Submit a technical question or find your regional support number.

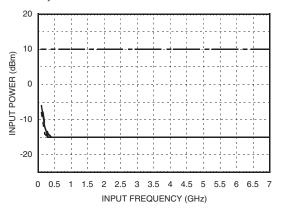
DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

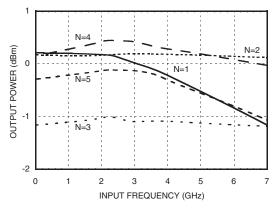
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

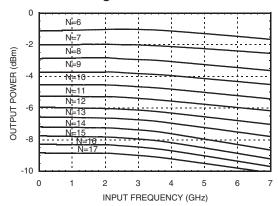


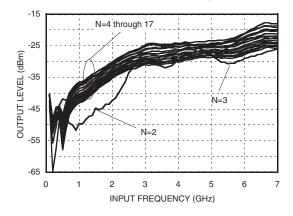
v04.0212



6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)


Input Sensitivity Window, All States

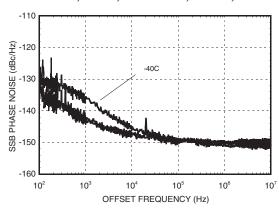

Input Sensitivity Window vs. Temperature, N = 17, T = -40°C to +85°C


Output Power, Divide Ratio States 1 through 5

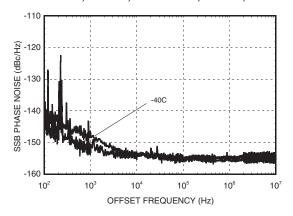
Output Power, Divide Ratio States 6 through 17

Fundamental Feedthru Power, Pin = 0 dBm

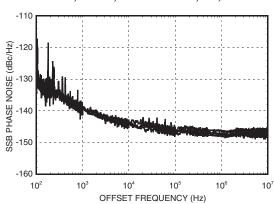
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


v04.0212

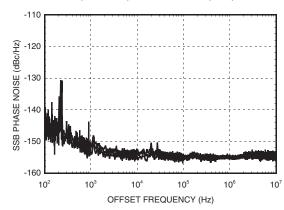
6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)


SSB Phase Noise Performance

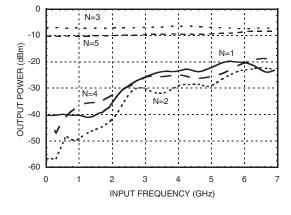
Fin = 6 GHz, N = 2; $T = -40^{\circ}C$, $+25^{\circ}C$, $+85^{\circ}C$


SSB Phase Noise Performance

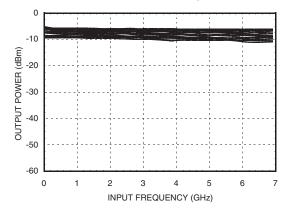
Fin = 6 GHz, N = 17; $T = -40^{\circ}C$, $+25^{\circ}C$, $+85^{\circ}C$


SSB Phase Noise Performance

Fin = 6 GHz, N = 2; Vcc = 4.75V, 5V, 5.25V

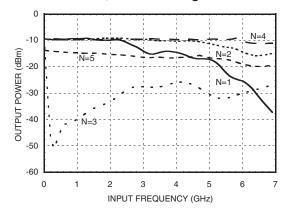


SSB Phase Noise Performance

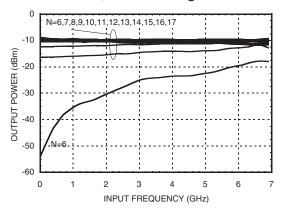

Fin = 6 GHz, N = 17; Vcc = 4.75V, 5V, 5.25V

2nd Harmonic, N = 1 through 5

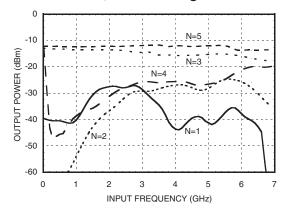
2nd Harmonic, N = 6 through 17

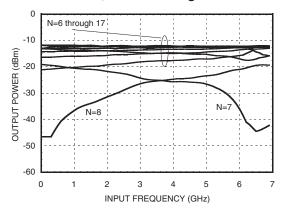


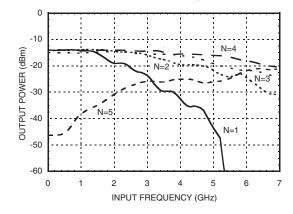
v04.0212

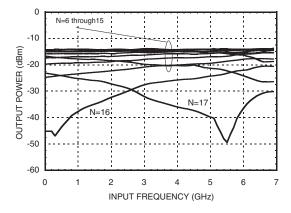


6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)


3rd Harmonic, N = 1 through 5


3rd Harmonic, N = 6 through 17

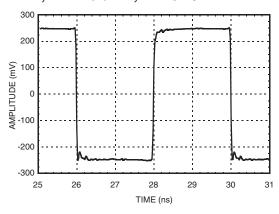

4th Harmonic, N = 1 through 5


4th Harmonic, N = 6 through 17

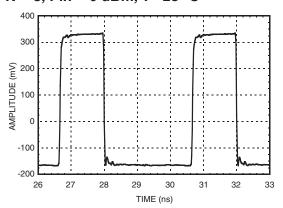
5th Harmonic, N = 1 through 5

5th Harmonic, N = 6 through 17

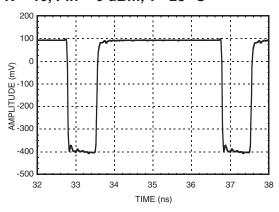
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

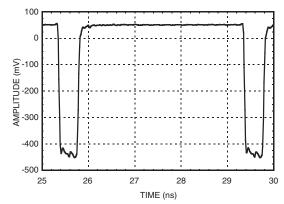


v04.0212



6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)


Output Voltage Waveform, Fin = 500 MHz, N = 2, Pin = 0 dBm, T= $25 ^{\circ}\text{C}$


Output Voltage Waveform, Fin = 750 MHz, N = 3, Pin = 0 dBm, T = 25 °C

Output Voltage Waveform, Fin = 2500 MHz, N = 10, Pin = 0 dBm, T= 25 °C

Output Voltage Waveform, Fin = 4250 MHz, N = 17, Pin = 0 dBm, T = 25 °C

N	Output Duty Cycle (%)
1	Input
2	50
3 - 17	[1 - (2/N)] x 100

Note

[1] Peak to peak amplitude does not change relative to N.

[2] Pulse duty cycle changes relative to N.

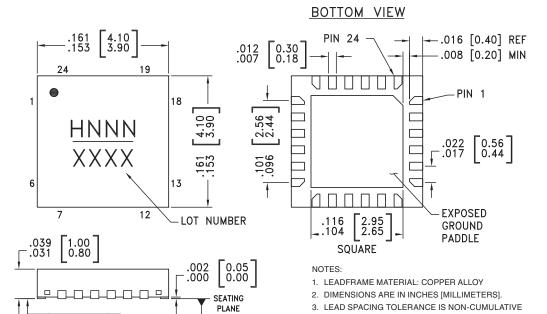
v04.0212

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)

Absolute Maximum Ratings

RF Input (Vcc= +5V)	+13 dBm
Supply Voltage (Vcc)	+5.5V
Logic Inputs	-0.5V to (0.5V + Vcc)
Junction Temperature (Tc)	135 °C
Continuous Pdiss (T = 85 °C) (derate 49 mW/° C above 85 °C)	2.4 W
Thermal Resistance (Junction to ground paddle)	20.5 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc


Vcc (V)	Icc (mA)
4.75	180
5.00	190
5.25	210

Note: HMC705LP4E will work over full voltage range above.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

-C-

Package Information

.003[0.08] C

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC705LP4	705LP4 Low Stress Injection Molded Plastic		MSL1 [1]	H705 XXXX
HMC705LP4E RoHS-compliant Low Stress Injection Molded Plastic		100% matte Sn	MSL1 [2]	<u>H705</u> XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.

PCB LAND PATTERN.

PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.

5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.

6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED

v04.0212

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)

Pin Description

Pin Number	Function	Description	Interface Schematic	
1 - 6, 8, 18	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.		
7, 20 - 24	DIV1, S0 N0 - N2 BYP	PFD INVERT function CMOS compatible input control bit Logic "LOW" = NORMAL Logic "HIGH" = INVERT	10k DIVI,S0 N0-N2 BYP	
9, 19	Vcc1, Vcc2	Supply Voltage	Vcc1 Vcc2	
10, 13, 14, 17	GND	These pins and package bottom must be connected to RF DC ground.	= O GND	
11	NFIN	(These pins are AC coupled and must be DC Blocked externally.) Frequency Input	50Ω 5V	
12	FIN	Frequency Input Complement	FIN NFIN	
15	NFout	Frequency, output complement	Vcc 50Ω Fout	
16	Fout	Frequency output	NFout	

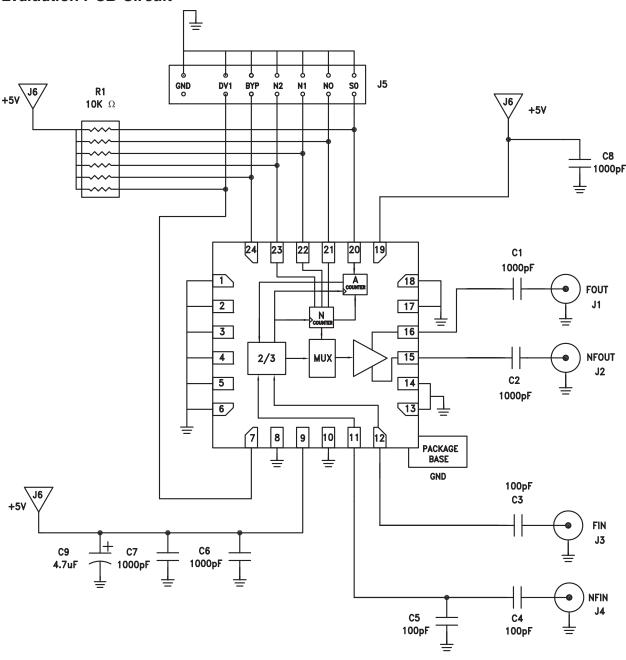
v04.0212

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)

HMC705LP4(E) Programming Truth Table

Division Ratio N	S0	N0	N1	N2	DIV 1	ВҮР
1	0	0	0	0	0	1
2	0	0	0	0	1	0
3	1	0	0	0	1	0
4	0	1	0	0	0	0
5	1	1	0	0	0	0
6	0	0	1	0	0	0
7	1	0	1	0	0	0
8	0	1	1	0	0	0
9	1	1	1	0	0	0
10	0	0	0	1	0	0
11	1	0	0	1	0	0
12	0	1	0	1	0	0
13	1	1	0	1	0	0
14	0	0	1	1	0	0
15	1	0	1	1	0	0
16	0	1	1	1	0	0
17	1	1	1	1	0	0

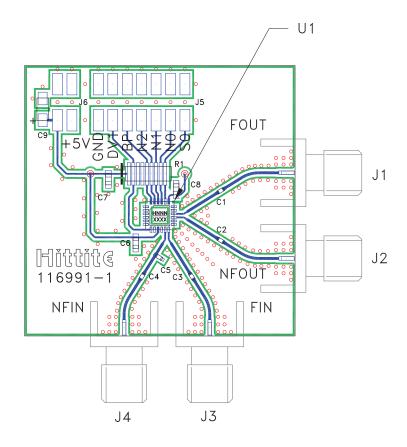
^{1 =} Logic High



v04.0212

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)

Evaluation PCB Circuit



v04.0212

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)

Evaluation PCB

List of Materials for Evaluation PCB 116993 [1]

Item	Description
J1 - J4	PCB Mount SMA Connector
J5	14 Position Header
J6	4 Position Header
R1	10K Ohm Resistor Network, Bissel SMD
C1, C2	1000 pF Capacitor, 0402 Pkg.
C3 - C5	100 pF Capacitor, 0402 Pkg.
C6 - C8	1000 pF Capacitor, 0603 Pkg.
C9	4.7 μF Tantalum Capacitor, Case A
U1	HMC705LP4(E) Programmable Divider
PCB [2]	116991 Eval Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

v04.0212

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)

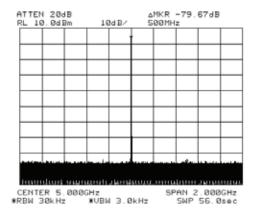
5-10 GHz SLUG 100pF 100pF VCO HMC587LC4 SR 14,16, GND SLUG 8 HMC364S8G DIV2 5 1000pF +5V LOOP FILTER: LOOP BW = 1 MHz 2200pF 1000p GHZ 2.5-5 0+57 200pF 2200pF N1 22 N2 23 2 200 N 8 2 SLUG 200 NFOUT VCC1 Ŋ FOUT PROGRAMMING SHOWN FOR DIVIDE-BY-10 100pF ND 12 1000pF 200 HMC439QS16G 2,8,9,11,16,SLU NVCO REF 800 100 pF PF 某 8 200

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

PLL application shown for Divide-by-10. Contact HMC to discuss your specific application.

Typical PLL Application Circuit using HMC705LP4(E)



v04.0212

6.5 GHz PROGRAMMABLE DIVIDER (N = 1 - 17)

Typical Application Showing Spurious Performance

CMOS/TTL Input Characteristics

Maximum Input Logic "0" Voltage ($V_{IL\;MAXIMUM}$) = 1.1V @ 1 μA .

Minimum Input Logic "1" Voltage ($V_{IH MINIMUM}$) = 1.8V @ 50 μ A.

Input IV characteristics for the logic inputs (S0, N0 - N2, DIVI, BYP) are shown below:

