HMC662* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

· HMC662LP3E Evaluation Board

DOCUMENTATION

Data Sheet

· HMC662 Data Sheet

REFERENCE MATERIALS 🖵

Quality Documentation

- Package/Assembly Qualification Test Report: 16L 3x3mm QFN Package (QTR: 11003 REV: 02)
- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)

DESIGN RESOURCES

- HMC662 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC662 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

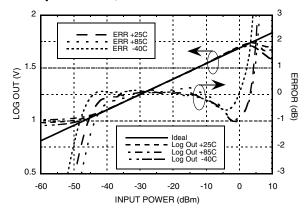
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

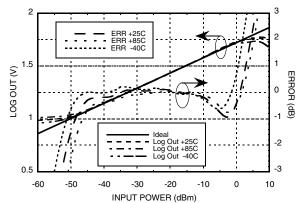
DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

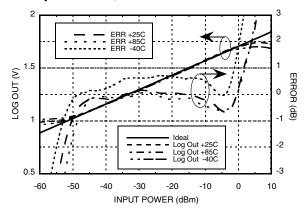
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

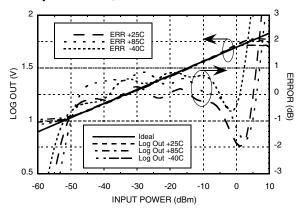

54 dB, LOGARITHMIC DETECTOR, 8 - 30 GHz

Electrical Specifications, (continued)


Parameter	Conditions	Min.	Тур.	Max.	Units
LOGOUT Interface					
Output Voltage Range		0.9		1.8	V
Output Rise Time [1] / Fall Time [2]	f = 10 GHz		5 / 10		ns
Power Down (EN) Interface					
Voltage Range for Normal Mode		0.8 x Vcc		Vcc	V
Voltage Range for Powerdown Mode		0		0.1 x Vcc	V
Power Supply (Vcc1, Vcc2)					
Operating Voltage Range		3.15	3.3	3.45	V
Supply Current in Normal Mode			88		mA
Supply Current in Power Down Mode			3		mA

^{[1] 0} dBm Input Pulsed; measured from 10% to 90%


LOG OUT & Error vs. Input Power, Fin = 8 GHz


LOG OUT & Error vs. Input Power, Fin = 10 GHz

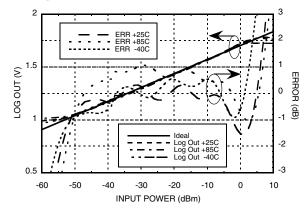
LOG OUT & Error vs. Input Power, Fin = 14 GHz

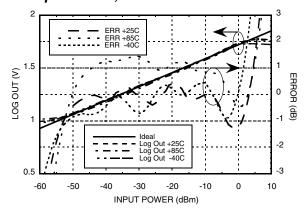
LOG OUT & Error vs. Input Power, Fin = 18 GHz

Unless otherwise noted: Vcc1, Vcc2 = +3.3V, TA = +25 °C

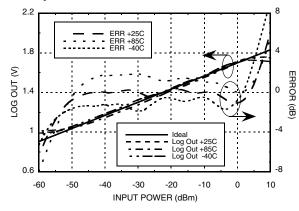
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

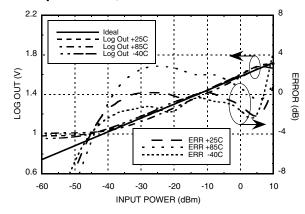
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

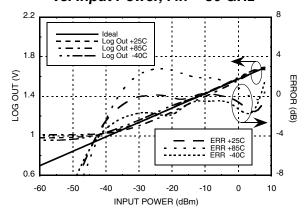

^{[2] 0} dBm Input Pulsed; measured from 90% to 10%



54 dB, LOGARITHMIC DETECTOR, 8 - 30 GHz

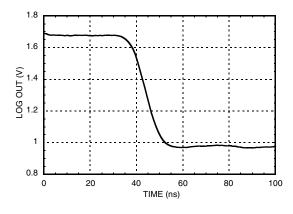

LOG OUT & Error vs. Input Power, Fin = 20 GHz

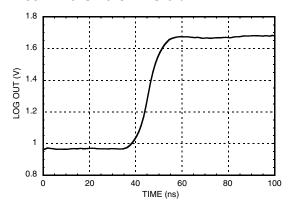

LOG OUT & Error vs. Input Power, Fin = 22 GHz


LOG OUT & Error vs. Input Power, Fin = 24 GHz

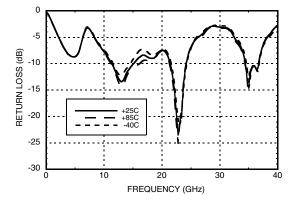
LOG OUT & Error vs. Input Power, Fin = 28 GHz

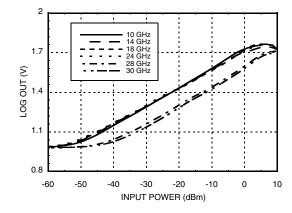
LOG OUT & Error vs. Input Power, Fin = 30 GHz


Unless otherwise noted: Vcc1, Vcc2 = +3.3V, TA = +25 °C



54 dB, LOGARITHMIC DETECTOR, 8 - 30 GHz

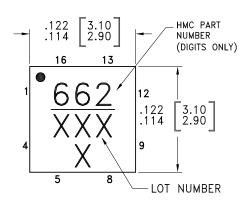

Fall Time @ 10 GHz @ 0 dBm

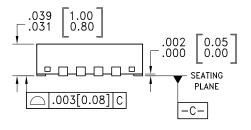

Rise Time @ 10 GHz @ 0 dBm

Input Return Loss

LOG OUT vs. Frequency

Unless otherwise noted: Vcc1, Vcc2 = +3.3V, TA = +25 °C


54 dB, LOGARITHMIC DETECTOR, 8 - 30 GHz


Absolute Maximum Ratings

EN	+3.6V
Vcc1. Vcc2	+3.6V
RF Input Power	+12 dBm
Junction Temperature	125 °C
Continuous Pdiss (T = 85°C) (Derate 12.63 mW/°C above 85°C)	0.51W
Thermal Resistance (R _{th}) (junction to ground paddle)	15.29 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 0

Outline Drawing

BOTTOM VIEW -.016 [0.40] REF .008 [0.20] MIN PIN 1 **EXPOSED GROUND PADDLE SQUARE**

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HMC APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [1]
HMC662LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	<u>662</u> XXX

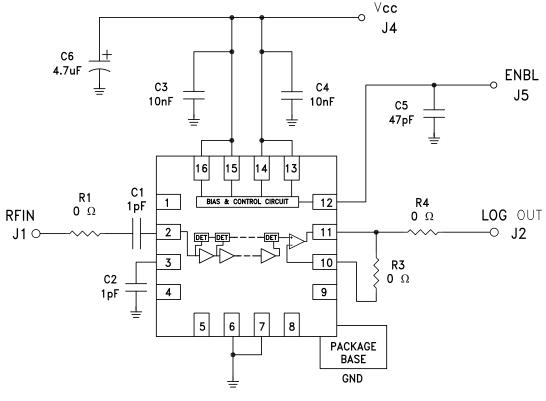
^{[1] 4-}Digit lot number XXXX

^[2] Max peak reflow temperature of 260 °C

54 dB, LOGARITHMIC DETECTOR, 8 - 30 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9	N/C	No connection necessary. These pins may be connected to RF/DC ground without affecting performance.	
2	RFIN	RF input pin.	RFIN O 1000 AC GND O
3	AC GND	External capacitor to ground is required. See application circuit.	
6, 7	GND	These pins and the exposed package bottom must be connected to a high quality RF/DC ground.	○ GND =
10, 11	LOG FB, LOG OUT	Log out and feedback. These pins should be shorted to each other (see application circuit). Log out load should be at least 1K Ohm or higher.	Vcc2 Vcc2 Vcc2 LOG OUT LOG FB
12	EN	Enable pin connected to Vcc1 or Vcc2 for normal operation. Total supply current reduced to less than 3mA when EN is set to 0V.	Vcc1 R=1.25k EN O
13	Vcc2	Bias Supply. Connect supply voltage to this pin with appropriate filtering. To ensure proper start-up supply rise time should be faster than 100usec	Vcc2 FSD FSD



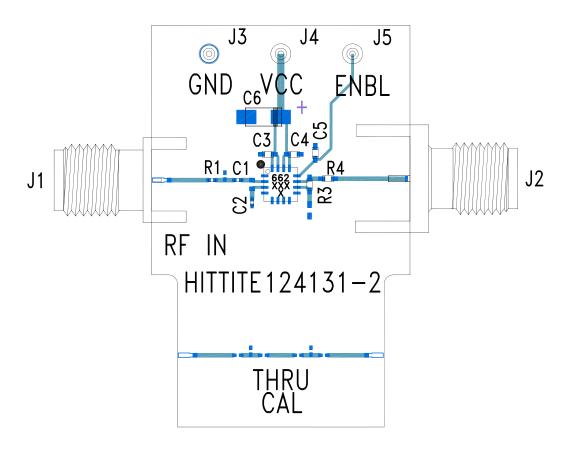
54 dB, LOGARITHMIC DETECTOR, 8 - 30 GHz

Pin Descriptions (Continued)

Pin Number	Function	Description	Interface Schematic	
14 - 16	Vcc1	Bias Supply. Connect supply voltage to these pins with appropriate filtering. To ensure proper start-up supply rise time should be faster than 100usec	Vcc1 O ESD	

Application & Evaluation PCB Schematic

Note1: C1 and C2 should be placed as close to the package as possible.


Note2: Log out load should be 1K Ohm or higher.

54 dB, LOGARITHMIC DETECTOR, 8 - 30 GHz

Evaluation PCB

List of Materials for Evaluation PCB 124133 [1]

Item	Description	
J1	K-Type Connector	
J2	SMA Connector	
J3 - J5	DC Pin	
C1, C2	1 pF Capacitor, 0201 Pkg.	
C3, C4	10 nF Capacitor, 0402 Pkg.	
C5	47 pF Capacitor, 0402 Pkg.	
C6	4.7 μF Tantalum Capacitor, CASE A Pkg.	
R1	0 Ω Resistor, 0201 Pkg.	
R3, R4	0 Ω Resistor, 0402 Pkg.	
U1	HMC662LP3E Log Detector	
PCB [2]	124131 Evaluation PCB	

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350 or Arlon 25 FR

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.