Specifications -

■ Absolute Maximum Ratings (Ta = 25°C)

Item				G3VM-XN(F)	G3VM-4N(F)	Conditions
Input	LED forward current		IF	30 mA		
	Repetitive peak LED forward current		I _{FP}	1 A		100-μs pulses, 100 pps
	LED reverse voltage		V _R	5 V		
Output	Output dielectric strength (load voltage)		V _{BO}	-60 to 60 V	-400 to 400 V	DC or AC peak value
				0 to 60 V	0 to 400 V	DC
	Continuous load current (see note 1)	A connection	Io	300 mA	150 MA	
		B connection		450 mA	200 mA	
		C connection		600 mA	300 mA	
Dielectric strength between I/O terminals (see note 2)			V _{I-O}	2,500 V AC		1 min
Ambient temperature			Та	−20 to 85°C		With no icing or condensation
Storage temperature			Tstg	−55 to 100°C		With no icing or condensation
Max. soldering temperature and time				260°C		10 s

Note: 1. The load current attenuation rates for the different types of connection are as follows: G3VM-XN(F): A: -3.0 mA/°C; B: -4.5 mA/°C; C: -6.0 mA/°C G3VM-4N(F): A: -1.5 mA/°C; B: -2.0 mA/°C; C: -3.0 mA/°C

2. The dielectric strength between I/O terminals was measured with voltage applied to all of the LED pins and with voltage applied to all of the light-receiving parts respectively.

Connection Circuit Diagram

■ Electrical Performance (Ta = 25°C)

Item				G3VM-XN(F)	G3VM-4N(F)	Unit	Conditions	
Input LED forward current Trigger LED forward current		V _F	1.2 V min, 1.7 V max.		V	I _F = 10 mA		
		I _{FT}	5 mA max.			I _O = 300 mA (G3VM-XN(F)) I _O = 150 mA (G3VM-4N(F))		
Output	Output ON resistance	A connection	R _{ON}	2 Ω max.	12 Ω max.	Ω	I _F = 10 mA I _O = MAX	
		B connection		1 Ω max.	6 Ω max.			
		C connection		0.5 Ω max.	3 Ω max.			
	Switching current leakage		I _{LEAK}	1.0 μA max.		μΑ	Voff = 60 V (G3VM-XN(F)) Voff = 400 V (G3VM-4N(F))	
Operate time		T _{ON}	0.5 ms max.	1.0 ms max.	ms	$R_L = 200 \Omega$ (see note)		
Release time			T _{OFF}	0.5 ms max.	1.0 ms max.	ms	$V_{DD} = 20 \text{ V},$ $I_F = 10 \text{ mA}$	
Floating capacity between I/O terminals		C _{I-O}	0.8 pF, TYP		pF	f = 1 MHz		

Note: The operate and release time were measured in the way shown below.

Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-XN G3VM-4N

G3VM-XNF G3VM-4NF

Note: "G3VM" is not printed on the actual product.

■ PCB Dimensions (Bottom View)

G3VM-XN G3VM-4N

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-XNF G3VM-4NF

Note: Mounting pad dimensions shown are a top view.

Installation

■ Terminal Arrangement/Internal Connection (Top View)

G3VM-XN G3VM-4N

G3VM-XNF G3VM-4NF

Precautions

$\angle ! ackslash$ WARNING

Be sure to turn OFF the power when wiring the Relay, otherwise an electric shock may be received.

/!\WARNING

Do not touch the charged terminals of the SSR, otherwise an electric shock may be received.

∕!∖ Caution

Do not apply overvoltage or overcurrent to the I/O circuits of the SSR, otherwise the SSR may malfunction or burn.

<u>∕!</u> Caution

Be sure to wire and solder the Relay under the proper soldering conditions, otherwise the Relay in operation may generate excessive heat and the Relay may burn.

Typical Relay Driving Circuit Examples C-MOS

Transistor

Use the following formula to obtain the LED current limiting resistance value to assure that the relay operates accurately. $V_{CC} - V_{OL} - V_F$ (ON)

$$R_1 = \frac{V_{CC} - V_{OL} - V_F (ON)}{5 \text{ to } 20 \text{ mA}}$$

Use the following formula to obtain the LED forward voltage value to assure that the relay releases accurately.

$$V_{F (OFF)} = V_{CC} - V_{OH} < 0.8 \text{ V}$$

Protection from Surge Voltage on the Input Terminals

If any reversed surge voltage is imposed on the input terminals, insert a diode in parallel to the input terminals as shown in the following circuit diagram and do not impose a reversed voltage value of 3 V or more.

Surge Voltage Protection Circuit Example

Protection from Spike Voltage on the Output Termi-

If a spike voltage exceeding the absolute maximum rated value is generated between the output terminals, insert a C-R snubber or clamping diode in parallel to the load as shown in the following circuit diagram to limit the spike voltage.

Spike Voltage Protection Circuit Example

Unused Terminals (6-pin only)

Terminal 3 is connected to the internal circuit. Do not connect anything to terminal 3 externally.

Pin Strength for Automatic Mounting

In order to maintain the characteristics of the relay, the force imposed on any pin of the relay for automatic mounting must not exceed the following.

In direction A: 1.96 N In direction B: 1.96 N

Load Connection

Do not short-circuit the input and output terminals while the relay is operating or the relay may malfunction.

AC Connection

DC Single Connection

DC Parallel Connection

Solder Mounting

Maintain the following conditions during manual or reflow soldering of the relays in order to prevent the temperature of the relays from rising.

- Pin Soldering
 - Solder each pin at a maximum temperature of 260°C within 10 s.
- Reflow Soldering
 - Solder each pin at a maximum temperature of 260°C within 10 s.
 - Make sure that the ambient temperature on the surface of the resin casing is 240°C max. for 10 s maximum.
 - The following temperature changes are recommendable for sol-

G3VM-XN(F)/4N(F)	OMRON	G3VM-XN(F	F)/4N(F)
	· · · · · · · · · · · · · · · · · · ·		<i>,,</i> (•

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

Cat. No. K112-E1-1 In the interest of product improvement, specifications are subject to change without notice.

OMRON Corporation
Electronic & Mechanical Components Division H.Q.
Low Signal Relay Division 28th Fl., Crystal Tower Bldg., 1-2-27, Shiromi, Chuo-ku, Osaka 540-6028 Japan Tel: (81)6-6949-6115/Fax: (81)6-6949-6114

Printed in Japan 0500-3M (0500) (O)