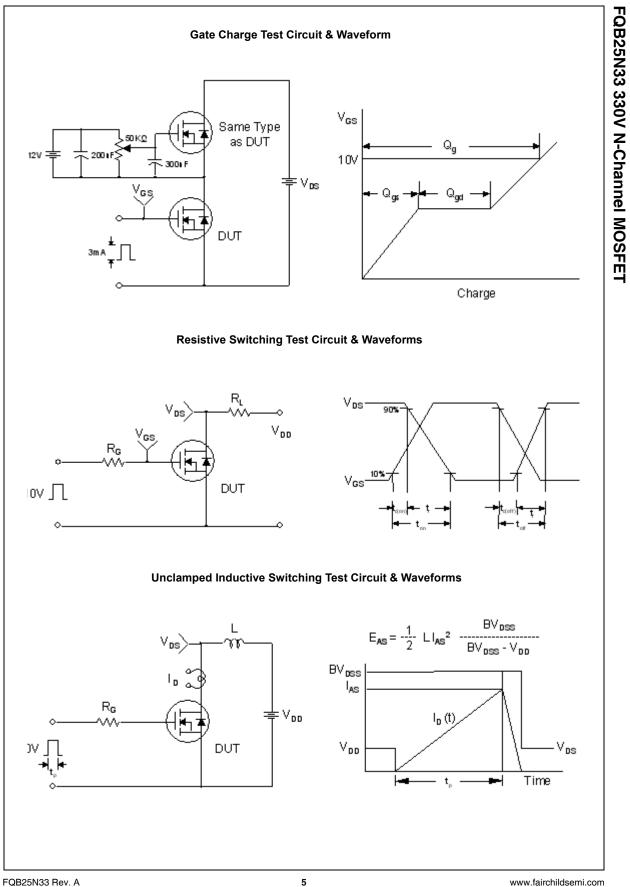
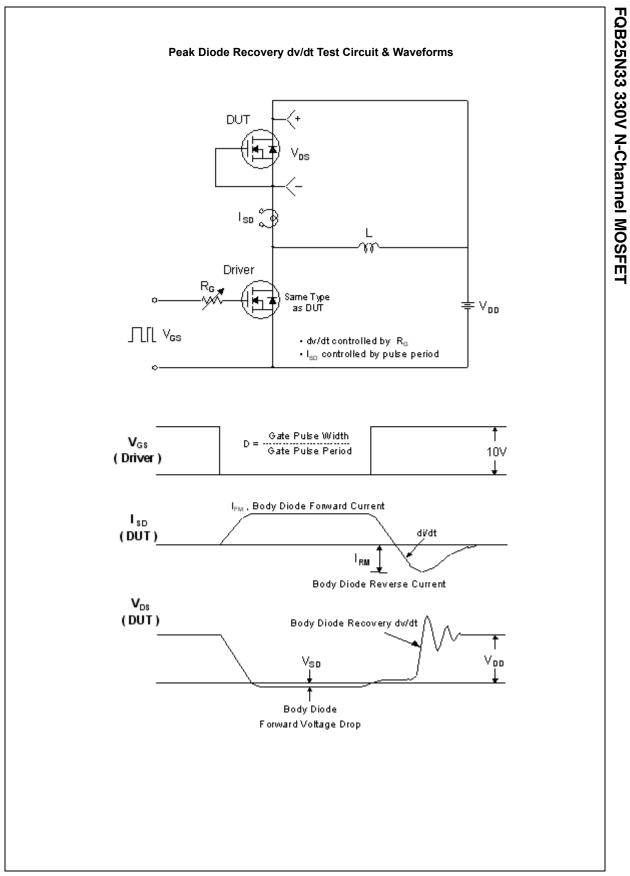
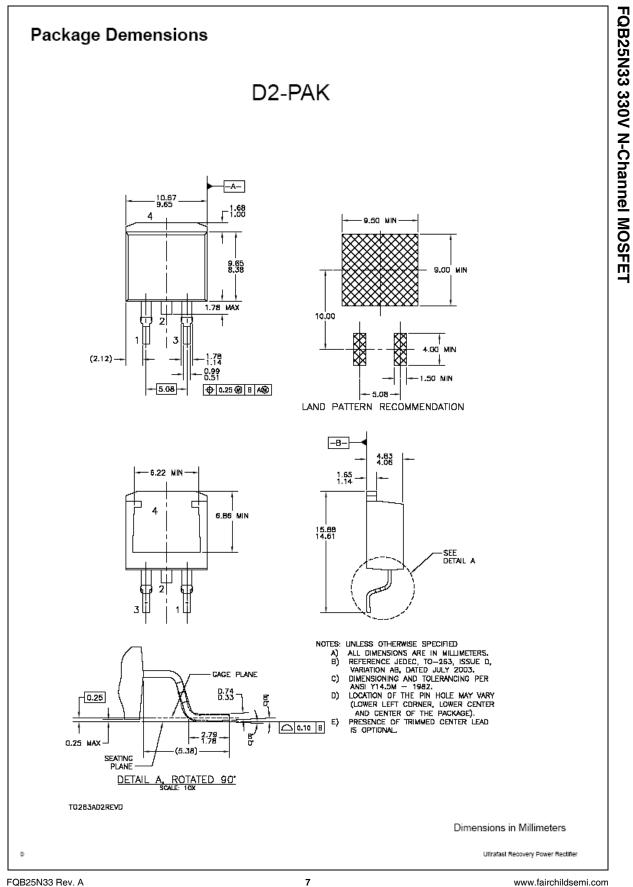

| teristics                                                                                                                                     | FQB25N33                                                                                                                                                      |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         | Reel Size Tap                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quantity<br>800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| teristics                                                                                                                                     | _                                                                                                                                                             | D2-PAł                                                                                                                                                           | K 330mm                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| teristics                                                                                                                                     | acteristics T                                                                                                                                                 | <sub>C</sub> = 25°C unle                                                                                                                                         | ess otherw                                                                                                                                                                                                                                                              | ise noted                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                               | Symbol Parameter                                                                                                                                              |                                                                                                                                                                  | Test Conditions                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Тур                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                               |                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Drain-Source                                                                                                                                  | Breakdown Volta                                                                                                                                               | ge                                                                                                                                                               | I <sub>D</sub> = 250μ                                                                                                                                                                                                                                                   | A, V <sub>GS</sub> = 0                                                                                                                                                                                                                                                                                                                                                                                                            | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| VDSS         Drain-Source Breakdown Voltage           VDSS/<br>ΔTJ         Breakdown Voltage Temperature Coefficient                          |                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V/ºC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Zero Gate Voltage Drain Current                                                                                                               |                                                                                                                                                               | $V_{DS} = 330V, V_{GS} = 0V$<br>$V_{DS} = 264V, T_{C} = 125^{\circ}C$                                                                                            |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μ <b>A</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| assr Gate-Body Leakage Current, Forward                                                                                                       |                                                                                                                                                               | orward                                                                                                                                                           |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Gate-Body Leakage Current, Forward           Gate-Body Leakage Current, Forward                                                               |                                                                                                                                                               | $V_{GS} = -30V, V_{DS} = 0V$                                                                                                                                     |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| teristics                                                                                                                                     |                                                                                                                                                               |                                                                                                                                                                  | · · · ·                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                               | -                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                               |                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Forward Iran                                                                                                                                  | sonductance                                                                                                                                                   |                                                                                                                                                                  | $V_{DS} = 50V, I_D = 12.5A, (Note 4)$                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| haracteristics                                                                                                                                |                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Input Capacit                                                                                                                                 | ance                                                                                                                                                          |                                                                                                                                                                  | $V_{DS} = 25V, V_{GS} = 0V,$<br>f = 1.0MHz                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Output Capad                                                                                                                                  | citance                                                                                                                                                       |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 290                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Reverse Tran                                                                                                                                  |                                                                                                                                                               |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | pF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Characteristics                                                                                                                               | 3                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                               | v Timo                                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Turn-On Dela                                                                                                                                  | y i me                                                                                                                                                        |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Turn-On Dela<br>Turn-On Rise                                                                                                                  | ,                                                                                                                                                             |                                                                                                                                                                  |                                                                                                                                                                                                                                                                         | 5V, I <sub>D</sub> = 25A                                                                                                                                                                                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 35<br>160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                               | Time                                                                                                                                                          |                                                                                                                                                                  | V <sub>DD</sub> = 16<br>R <sub>GS</sub> = 25                                                                                                                                                                                                                            | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                 | A<br>(Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Turn-On Rise                                                                                                                                  | Time<br>y Time                                                                                                                                                |                                                                                                                                                                  | R <sub>GS</sub> = 25                                                                                                                                                                                                                                                    | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Turn-On Rise<br>Turn-Off Dela<br>Turn-Off Fall<br>Total Gate Ch                                                                               | Time<br>y Time<br>Time<br>narge                                                                                                                               |                                                                                                                                                                  | R <sub>GS</sub> = 25<br>V <sub>DS</sub> = 29                                                                                                                                                                                                                            | Ω<br>7V, I <sub>D</sub> = 254                                                                                                                                                                                                                                                                                                                                                                                                     | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100<br>90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 160<br>145                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Turn-On Rise<br>Turn-Off Dela<br>Turn-Off Fall<br>Total Gate Ch                                                                               | Time<br>y Time<br>Time                                                                                                                                        |                                                                                                                                                                  | R <sub>GS</sub> = 25                                                                                                                                                                                                                                                    | Ω<br>7V, I <sub>D</sub> = 254                                                                                                                                                                                                                                                                                                                                                                                                     | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100<br>90<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 160<br>145<br>110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ns<br>ns<br>ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Turn-On Rise<br>Turn-Off Dela<br>Turn-Off Fall<br>Total Gate Ch                                                                               | Time<br>y Time<br>Time<br>harge<br>ce Gate Charge                                                                                                             |                                                                                                                                                                  | R <sub>GS</sub> = 25<br>V <sub>DS</sub> = 29                                                                                                                                                                                                                            | Ω<br>7V, I <sub>D</sub> = 25A<br>V,                                                                                                                                                                                                                                                                                                                                                                                               | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100<br>90<br>70<br>58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 160<br>145<br>110<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns<br>ns<br>ns<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Turn-On Rise<br>Turn-Off Dela<br>Turn-Off Fall<br>Total Gate Cf<br>Gate to Sourc<br>Gate to Drain                                             | Time<br>y Time<br>Time<br>harge<br>ce Gate Charge                                                                                                             | aximum Ratin                                                                                                                                                     | R <sub>GS</sub> = 25<br>V <sub>DS</sub> = 29<br>V <sub>GS</sub> = 15                                                                                                                                                                                                    | Ω<br>7V, I <sub>D</sub> = 25A<br>V,                                                                                                                                                                                                                                                                                                                                                                                               | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100<br>90<br>70<br>58<br>11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160<br>145<br>110<br>75<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns<br>ns<br>nS<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Turn-On Rise<br>Turn-Off Dela<br>Turn-Off Fall<br>Total Gate Cf<br>Gate to Sourd<br>Gate to Drain<br>ce Diode Cha                             | Time<br>y Time<br>Time<br>harge<br>ce Gate Charge<br>Charge                                                                                                   |                                                                                                                                                                  | $R_{GS} = 25$<br>$V_{DS} = 29$<br>$V_{GS} = 15$<br>gs                                                                                                                                                                                                                   | Ω<br>7V, I <sub>D</sub> = 25 <i>I</i><br>V,                                                                                                                                                                                                                                                                                                                                                                                       | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100<br>90<br>70<br>58<br>11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 160<br>145<br>110<br>75<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ns<br>ns<br>nS<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Turn-On Rise<br>Turn-Off Dela<br>Turn-Off Fall<br>Total Gate Cf<br>Gate to Sourc<br>Gate to Drain<br>ce Diode Cha<br>Maximum Co               | Time<br>y Time<br>Time<br>harge<br>ce Gate Charge<br>Charge<br>racteristics and Ma                                                                            | urce Diode Fo                                                                                                                                                    | $R_{GS} = 25$<br>$V_{DS} = 29$<br>$V_{GS} = 15$<br>gs<br>prward Cur                                                                                                                                                                                                     | Ω<br>7V, I <sub>D</sub> = 25A<br>V,<br>rrent                                                                                                                                                                                                                                                                                                                                                                                      | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100<br>90<br>70<br>58<br>11.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160<br>145<br>110<br>75<br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Turn-On Rise<br>Turn-Off Dela<br>Turn-Off Fall<br>Total Gate Cl<br>Gate to Sourc<br>Gate to Drain<br>ce Diode Cha<br>Maximum Co<br>Maximum Pu | Time<br>y Time<br>Time<br>harge<br>ce Gate Charge<br>Charge<br>racteristics and Ma<br>ntinuous Drain-So                                                       | urce Diode Fo<br>Diode Forwa                                                                                                                                     | $R_{GS} = 25$<br>$V_{DS} = 29$<br>$V_{GS} = 15$<br>gs<br>prward Cur                                                                                                                                                                                                     | Ω<br>7V, I <sub>D</sub> = 25 <i>I</i><br>V,<br>rrent                                                                                                                                                                                                                                                                                                                                                                              | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100<br>90<br>70<br>58<br>11.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160<br>145<br>110<br>75<br><br><br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns<br>ns<br>nC<br>nC<br>nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Turn-On Rise<br>Turn-Off Dela<br>Turn-Off Fall<br>Total Gate Cl<br>Gate to Sourc<br>Gate to Drain<br>ce Diode Cha<br>Maximum Co<br>Maximum Pu | Time<br>y Time<br>Time<br>harge<br>ce Gate Charge<br>Charge<br>racteristics and Ma<br>ntinuous Drain-So<br>lsed Drain-Source<br>Diode Forward Vo              | urce Diode Fo<br>Diode Forwa                                                                                                                                     | $R_{GS} = 25$<br>$V_{DS} = 29$<br>$V_{GS} = 15$<br>gs<br>prward Cur<br>rd Current                                                                                                                                                                                       | Ω<br>7V, I <sub>D</sub> = 25A<br>V,<br>rrent                                                                                                                                                                                                                                                                                                                                                                                      | (Note 4, 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100<br>90<br>70<br>58<br>11.2<br>21<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 160<br>145<br>110<br>75<br><br><br>25<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ns<br>ns<br>nC<br>nC<br>nC<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                               | Gate-Body Le<br>Gate-Body Le<br>eristics<br>Gate Thresho<br>Drain to Sourc<br>Forward Tran<br>haracteristics<br>Input Capacit<br>Output Capac<br>Reverse Tran | Gate-Body Leakage Current, Fo<br>Gate-Body Leakage Current, Fo<br>eristics<br>Gate Threshold Voltage<br>Drain to Source On Resistance<br>Forward Transonductance | Gate-Body Leakage Current, Forward<br>Gate-Body Leakage Current, Forward<br>eristics<br>Gate Threshold Voltage<br>Drain to Source On Resistance<br>Forward Transonductance<br>haracteristics<br>Input Capacitance<br>Output Capacitance<br>Reverse Transfer Capacitance | Zero Gate Voltage Drain Current $V_{DS} = 26$ Gate-Body Leakage Current, Forward $V_{GS} = 30$ Gate-Body Leakage Current, Forward $V_{GS} = -30$ eristics $V_{DS} = V_G$ Gate Threshold Voltage $V_{DS} = V_G$ Drain to Source On Resistance $V_{GS} = 10^{\circ}$ Forward Transonductance $V_{DS} = 50^{\circ}$ naracteristicsInput CapacitanceOutput Capacitance $V_{DS} = 25^{\circ}$ Reverse Transfer Capacitance $f = 1.0MH$ | Zero Gate Voltage Drain Current $V_{DS} = 264V, T_C = 125$ Gate-Body Leakage Current, Forward $V_{GS} = 30V, V_{DS} = 0V$ Gate-Body Leakage Current, Forward $V_{GS} = -30V, V_{DS} = 0V$ eristicseristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250\mu$ Drain to Source On Resistance $V_{GS} = 10V, I_D = 12.5\mu$ Forward Transonductance $V_{DS} = 50V, I_D = 12.5\mu$ naracteristicsInput CapacitanceOutput Capacitance $V_{DS} = 25V, V_{GS} = 0V$ Reverse Transfer Capacitance $f = 1.0MHz$ | Zero Gate Voltage Drain Current $V_{DS} = 264V, T_C = 125^{\circ}C$ Gate-Body Leakage Current, Forward $V_{GS} = 30V, V_{DS} = 0V$ Gate-Body Leakage Current, Forward $V_{GS} = -30V, V_{DS} = 0V$ eristicseristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250\mu A$ Drain to Source On Resistance $V_{GS} = 10V, I_D = 12.5A,$ Forward Transonductance $V_{DS} = 50V, I_D = 12.5A,$ (Note 4)maracteristicsInput CapacitanceOutput Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ Reverse Transfer Capacitance $f = 1.0MHz$ | Zero Gate Voltage Drain Current $V_{DS} = 264V, T_C = 125^{\circ}C$ Gate-Body Leakage Current, Forward $V_{GS} = 30V, V_{DS} = 0V$ Gate-Body Leakage Current, Forward $V_{GS} = -30V, V_{DS} = 0V$ eristics $V_{GS} = -30V, V_{DS} = 0V$ eristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250\mu A$ 3.0Drain to Source On Resistance $V_{GS} = 10V, I_D = 12.5A,$ Forward Transonductance $V_{DS} = 50V, I_D = 12.5A,$ maracteristicsInput Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ Output Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ Reverse Transfer Capacitance $$ | Zero Gate Voltage Drain Current $V_{DS} = 264V, T_C = 125^{\circ}C$ Gate-Body Leakage Current, Forward $V_{GS} = 30V, V_{DS} = 0V$ Gate-Body Leakage Current, Forward $V_{GS} = -30V, V_{DS} = 0V$ eristicsGate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250\mu A$ $3.0$ Drain to Source On Resistance $V_{GS} = 10V, I_D = 12.5A,$ $0.18$ Forward Transonductance $V_{DS} = 50V, I_D = 12.5A,$ (Note 4)1naracteristicsInput Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ $$ $1510$ Output Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ $$ $290$ Reverse Transfer Capacitance $$ $40$ | Zero Gate Voltage Drain Current $V_{DS} = 264V, T_C = 125^{\circ}C$ 10         Gate-Body Leakage Current, Forward $V_{GS} = 30V, V_{DS} = 0V$ 100         Gate-Body Leakage Current, Forward $V_{GS} = -30V, V_{DS} = 0V$ 100         Gate-Body Leakage Current, Forward $V_{GS} = -30V, V_{DS} = 0V$ 100         eristics       Gate Threshold Voltage $V_{DS} = V_{GS}, I_D = 250\mu A$ $3.0$ $5.0$ Drain to Source On Resistance $V_{GS} = 10V, I_D = 12.5A,$ $0.18$ $0.23$ Forward Transonductance $V_{DS} = 50V, I_D = 12.5A,$ (Note 4) $1$ naracteristics       Input Capacitance $V_{DS} = 25V, V_{GS} = 0V,$ $$ $1510$ $2010$ Output Capacitance $f = 1.0MHz$ $$ $40$ $60$ |

FQB25N33 330V N-Channel MOSFET





FQB25N33 Rev. A

FQB25N33 330V N-Channel MOSFET




FQB25N33 Rev. A





FQB25N33 Rev. A



## TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

| ACEx™                            | FACT Quiet Series™             | OCX™                            | SILENT SWITCHER <sup>®</sup> |   |
|----------------------------------|--------------------------------|---------------------------------|------------------------------|---|
| ActiveArray™                     | GlobalOptoisolator™            | OCXPro™                         | SMART START™                 |   |
| Bottomless™                      | GTO™                           | OPTOLOGIC®                      | SPM™                         | , |
| Build it Now™                    | HiSeC™                         | OPTOPLANAR™                     | Stealth™                     | 1 |
| CoolFET™                         | I <sup>2</sup> C™              | PACMAN™                         | SuperFET™                    |   |
| CROSSVOLT™                       | i-Lo™                          | POP™                            | SuperSOT™-3                  |   |
| DOME™                            | ImpliedDisconnect <sup>™</sup> | Power247™                       | SuperSOT™-6                  |   |
| EcoSPARK™                        | IntelliMAX™                    | PowerEdge™                      | SuperSOT™-8                  |   |
| E <sup>2</sup> CMOS™             | ISOPLANAR™                     | PowerSaver™                     | SyncFET™                     |   |
| EnSigna™                         | LittleFET™                     | PowerTrench <sup>®</sup>        | TCM™                         |   |
| FACT™                            | MICROCOUPLER™                  | QFET <sup>®</sup>               | TinyBoost™                   |   |
| FAST <sup>®</sup>                | MicroFET™                      | QS™                             | TinyBuck™                    |   |
| FASTr™                           | MicroPak™                      | QT Optoelectronics <sup>™</sup> | TinyPWM™                     |   |
| FPS™                             | MICROWIRE™                     | Quiet Series™                   | TinyPower™                   |   |
| FRFET™                           | MSX™                           | RapidConfigure™                 | TinyLogic <sup>®</sup>       |   |
|                                  | MSXPro™                        | RapidConnect™                   | TINYOPTO™                    |   |
| Across the board. Aroun          | d the world.™                  | µSerDes™                        | TruTranslation™              |   |
| The Power Franchise <sup>®</sup> |                                | ScalarPump™                     | UHC™                         |   |
| Programmable Active Dr           | roop™                          |                                 |                              |   |
|                                  |                                |                                 |                              |   |

FQB25N33 330V N-Channel MOSFET

UniFET™ **UltraFET**® VCX™ Wire™

DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

## LIFE SUPPORT POLICY

PRODUCT STATUS DEFINITIONS

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

## As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| Datasheet Identification | Product Status            | Definition                                                                                                                                                                                                                        |
|--------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advance Information      | Formative or In<br>Design | This datasheet contains the design specifications for<br>product development. Specifications may change in<br>any manner without notice.                                                                                          |
| Preliminary              | First Production          | This datasheet contains preliminary data, and<br>supplementary data will be published at a later date.<br>Fairchild Semiconductor reserves the right to make<br>changes at any time without notice in order to improve<br>design. |
| No Identification Needed | Full Production           | This datasheet contains final specifications. Fairchild<br>Semiconductor reserves the right to make changes at<br>any time without notice in order to improve design.                                                             |
| Obsolete                 | Not In Production         | This datasheet contains specifications on a product<br>that has been discontinued by Fairchild semiconducto<br>The datasheet is printed for reference information only                                                            |

Rev. 120

FQB25N33 Rev. A