

Contents

Pin Configuration	3
Selection Guide	
Maximum Ratings	4
Operating Range	
Electrical Characteristics	
Capacitance	
AC Test Loads and Waveforms	
Switching Characteristics	6
Switching Waveforms	
Truth Table	
Ordering Information	
Ordering Code Definitions	

10
11
11
11
12
13
13
13
13
13
13

Pin Configuration

Figure 1. 32-pin SOJ pinout

Selection Guide

Description	-20
Maximum Access Time (ns)	20
Maximum Operating Current (mA)	170
Maximum CMOS Standby Current (mA)	15

Document Number: 38-05053 Rev. *D Page 3 of 13

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage Temperature-65 °C to +150 °C Ambient Temperature with Supply Voltage on V $_{CC}$ Relative to GND (Pin 32 to Pin 16)–0.5 V to +7.0 V

DC Input Voltage $^{[1]}$ 0.5 V to V _{CC} + 0.5 V
Output Current into Outputs (LOW)20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)
Latch-up Current > 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}	
Commercial	0 °C to +70 °C	5 V ± 10%	

Electrical Characteristics

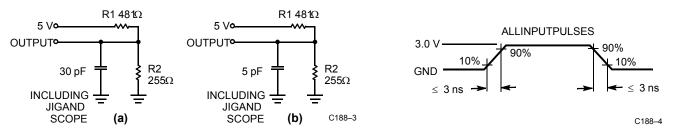
Over the Operating Range

Parameter [2]	Description	Test Conditions	-20		Unit
Parameter	Description	Min		Max	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min, I _{OH} = -4.0 mA	2.4	_	V
V_{OL}	Output LOW Voltage	V _{CC} = Min, I _{OL} = 8.0 mA	_	0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage [1]		-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	-5	+5	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_I \le V_{CC}$, Output Disabled	-5	+5	μΑ
I _{CC}	V _{CC} Operating Supply Current	V_{CC} = Max, I_{OUT} = 0 mA, f = f_{MAX} = 1/ t_{RC}	_	170	mA
I _{SB1}	Automatic CE Power-Down Current – TTL Inputs	$\begin{aligned} &\text{Max V}_{CC}, \overline{CE}_1 \geq V_{IH} \text{ or } CE_2 \leq V_{IL}, \\ &V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL}, f = f_{MAX} \end{aligned}$	_	35	mA
I _{SB2}	Automatic CE Power-Down Current – CMOS Inputs	$\begin{aligned} &\text{Max V}_{CC}, \overline{\text{CE}}_1 \geq \text{V}_{CC} - 0.3 \text{V or CE}_2 \leq 0.3 \text{V}, \\ &\text{V}_{IN} \geq \text{V}_{CC} - 0.3 \text{V or V}_{IN} \leq 0.3 \text{V, f = 0} \end{aligned}$	_	15	mA

Notes

- Minimum voltage is equal to –2.0 V for pulse durations less than 20 ns.
 See the last page of this specification for Group A subgroup testing information.

Document Number: 38-05053 Rev. *D



Capacitance

Parameter [3]	Description	Test Conditions	Max	Unit
C _{IN} : Addresses	Input Capacitance	$T_A = 25 ^{\circ}\text{C}, f = 1 \text{MHz}, V_{CC} = 5.0 \text{V}$	6	pF
C _{IN} : Controls	Input Capacitance		8	pF
C _{OUT}	Output Capacitance		8	pF

AC Test Loads and Waveforms

Figure 2. AC Test Loads and Waveforms [4, 5]

Notes

- 3. Tested initially and after any design or process changes that may affect these parameters.
- Tests conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- 5. t_{HZOE} , t_{HZCE} , and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ± 500 mV from steady-state voltage.

Switching Characteristics

Over the Operating Range

Parameter [6, 7]	-2	20	11!4						
Parameter [8, 1]	Description	Min	Max	Unit					
READ CYCLE	READ CYCLE								
t _{RC}	Read Cycle Time	20	_	ns					
t _{AA}	Address to Data Valid	_	20	ns					
t _{OHA}	Data Hold from Address Change	3	_	ns					
t _{ACE}	CE ₁ LOW or CE ₂ HIGH to Data Valid	_	20	ns					
t _{DOE}	OE LOW to Data Valid	_	9	ns					
t _{LZOE}	OE LOW to Low Z [8]	0	_	ns					
t _{HZOE}	OE HIGH to High Z [8, 9]	_	9	ns					
t _{LZCE}	CE ₁ LOW or CE ₂ HIGH to low Z ^[8]	3	_	ns					
t _{HZCE}	CE ₁ HIGH or CE ₂ LOW to high Z ^[8, 9]	_	9	ns					
t _{PU}	CE ₁ LOW or CE ₂ HIGH to power-up	0	_	ns					
t _{PD}	CE ₁ HIGH or CE ₂ LOW to power-down	_	20	ns					
WRITE CYCLE [1	0, 11]	<u>.</u>		•					
t _{WC}	Write Cycle Time	20	_	ns					
t _{SCE}	CE ₁ LOW or CE ₂ HIGH to Write End	15	_	ns					
t _{AW}	Address set-up to Write End	15	_	ns					
t _{HA}	Address Hold from Write End	0	_	ns					
t _{SA}	Address set-up to Write Start	0	_	ns					
t _{PWE}	WE Pulse Width	15	_	ns					
t _{SD}	Data Set-Up to Write End	10	_	ns					
t _{HD}	Data Hold from Write End	0	_	ns					
t _{HZWE}	WE LOW to high Z [9]	0	7	ns					
t _{LZWE}	WE HIGH to low Z [8, 9]	3	_	ns					

^{6.} Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V, input pulse levels of 0 to 3.0 V, and output loading of the specified I_{OL}/I_{OH}

and 30-pF load capacitance.

7. See the last page of this specification for Group A subgroup testing information.

8. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device.

9. t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

10. The internal write time of the memory is defined by the overlap of CE₁, LOW, CE₂ HIGH, and WE LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deasserted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

11. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Switching Waveforms

Figure 3. Read Cycle No. 1 [12, 13]

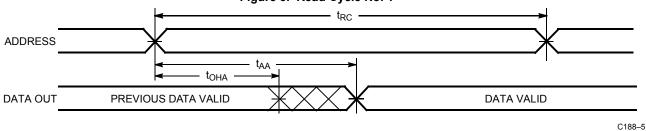


Figure 4. Read Cycle No. 2 (CE Controlled) [13, 14, 15]

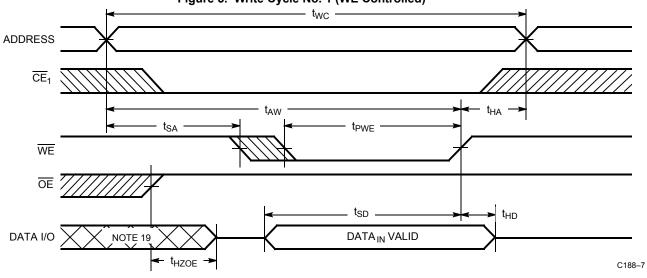



Figure 5. Write Cycle No. 1 (WE Controlled) [15, 16, 17, 18]

- 12. <u>De</u>vice is continuously selected. <u>OE</u>, <u>CE</u> = V_{IL}. 13. <u>WE</u> is HIGH for read cycle.
- 14. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.
- 14. Address valid prior to or coincident with CE transition LOW.
 15. Timing parameters are the same for all chip enable signals (CE₁ and CE₂), so only the timing for CE₁ is shown.
 16. The internal write time of the memory is defined by the overlap of CE₁, LOW, CE₂ HIGH, and WE LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deasserted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
 17. Data I/O is high impedance if OE = V_{IH}.
 18. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 19. During this period, the I/Os are in the output state and input signals should not be applied.

Switching Waveforms (Continued)

Figure 6. Write Cycle No.2 (CE Controlled) [20, 21, 22, 23]

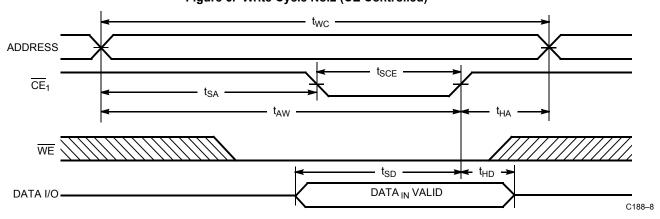
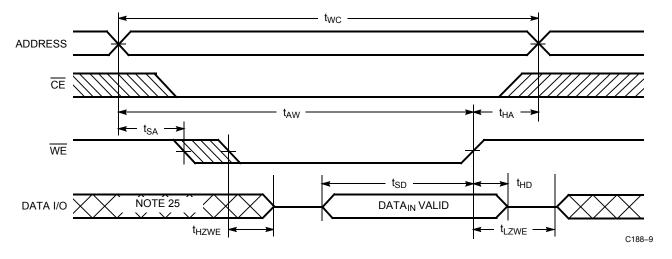



Figure 7. Write Cycle No. 3 (WE Controlled, OE LOW) [21, 23, 24]

Notes

- Notes

 20. The internal write time of the memory is defined by the overlap of \overline{CE}_1 , LOW, CE_2 HIGH, and \overline{WE} LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deasserted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

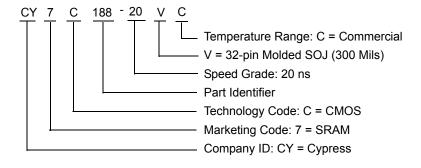
 21. Timing parameters are the same for all chip enable signals (\overline{CE}_1 and \overline{CE}_2), so only the timing for \overline{CE}_1 is shown.

 22. Data I/O is high impedance if $\overline{OE} = V_{\text{IH}}$.

 23. If \overline{CE} goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

 24. The minimum write cycle time for write cycle #3 (WE controlled, \overline{OE} LOW) is the sum of t_{HZWE} and t_{SD} .

 25. During this period, the I/Os are in the output state and input signals should not be applied.

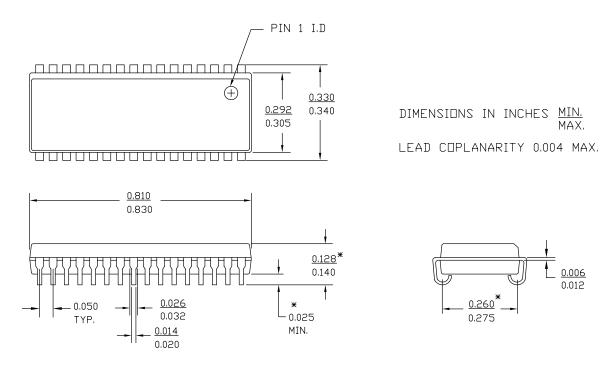

Truth Table

CE	WE	OE	Input/Output	Mode	Power
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C188-20VC	51-85041	32-pin Molded SOJ (300 Mils)	Commercial

Ordering Code Definitions



Document Number: 38-05053 Rev. *D Page 9 of 13

Package Diagram

Figure 8. 32-pin SOJ (300 Mils) Package Outline, 51-85041

51-85041 *C

Acronyms

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
CE	Chip Enable
DIP	Dual In-line Package
I/O	Input/Output
OE	Output Enable
SRAM	Static Random Access Memory
SOJ	Small Outline J-lead
TTL	Transistor-Transistor Logic
WE	Write Enable

Document Conventions

Units of Measure

Symbol	Unit of Measure
°C	degree Celsius
MHz	megahertz
μA	microampere
mA	milliampere
mV	millivolt
mW	milliwatt
ns	nanosecond
%	percent
pF	picofarad
V	volt
W	watt

Document Number: 38-05053 Rev. *D Page 11 of 13

Document History Page

ocument Title: CY7C188, 32 K × 9 Static RAM ocument Number: 38-05053				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	107155	09/10/01	SZV	Change from Spec number: 38-00220 to 38-05053
*A	506367	See ECN	NXR	Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I _{OS} parameter from DC Electrical Characteristics table Updated Ordering Information table
*B	2894123	03/17/2010	VKN	Added Table of Contents Removed 15 ns speed bin Updated Ordering Information table Updated Package Diagram (Figure 1) Added Sales, Solutions, and Legal Information
*C	3096933	11/30/2010	PRAS	Added Ordering Code Definitions. Added Acronyms and Units of Measure. Minor edits.
*D	4214637	12/09/2013	VINI	Updated Package Diagram: spec 51-85041 – Changed revision from *B to *C.
				Updated in new template. Completing Sunset Review.

Document Number: 38-05053 Rev. *D Page 12 of 13

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Automotive Clocks & Buffers Interface

Lighting & Power Control

Memory PSoC Touch Sensing USB Controllers Wireless/RF cypress.com/go/automotive cypress.com/go/clocks cypress.com/go/interface cypress.com/go/powerpsoc cypress.com/go/plc cypress.com/go/memory cypress.com/go/psoc cypress.com/go/touch cypress.com/go/USB cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

© Cypress Semiconductor Corporation, 2001-2013. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 38-05053 Rev. *D Revised December 9, 2013

Page 13 of 13

All products and company names mentioned in this document may be the trademarks of their respective holders.