

**Maximum Ratings** 

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature ......-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage on  $\rm V_{CC}$  to Relative  $\rm GND^{[1]}$  .... –0.5V to +4.6V

DC Voltage Applied to Outputs in High Z State  $^{[1]}$ ......-0.5V to  $^{V}$  CC + 0.5V

| DC Input Voltage <sup>[1]</sup> | 0.5V to V <sub>CC</sub> + 0.5V |
|---------------------------------|--------------------------------|
| Current into Outputs (LOW)      | 20 mA                          |

## **Operating Range**

| Range      | Ambient<br>Temperature <sup>[2]</sup> | V <sub>cc</sub> |
|------------|---------------------------------------|-----------------|
| Commercial | 0°C to +70°C                          | $3.3V \pm 0.3V$ |
| Industrial | –40°C to +85°C                        |                 |

# **Electrical Characteristics** Over the Operating Range

| Parameter        | Description                                 | Test Condition                                                                                                                                          | ons                                        | _                        | 12  | -15                      |      |      |
|------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|-----|--------------------------|------|------|
|                  |                                             |                                                                                                                                                         |                                            |                          |     | Min.                     | Max. | Unit |
| V <sub>OH</sub>  | Output HIGH Voltage                         | $V_{CC} = Min.,$<br>$I_{OH} = -4.0 \text{ mA}$                                                                                                          |                                            | 2.4                      |     | 2.4                      |      | V    |
| V <sub>OL</sub>  | Output LOW Voltage                          | V <sub>CC</sub> = Min.,<br>I <sub>OL</sub> = 8.0 mA                                                                                                     | $V_{CC} = Min.,$ $I_{OL} = 8.0 \text{ mA}$ |                          | 0.4 |                          | 0.4  | V    |
| V <sub>IH</sub>  | Input HIGH Voltage                          |                                                                                                                                                         | 2.2                                        | V <sub>CC</sub><br>+ 0.5 | 2.2 | V <sub>CC</sub><br>+ 0.5 | V    |      |
| V <sub>IL</sub>  | Input LOW Voltage <sup>[1]</sup>            |                                                                                                                                                         |                                            |                          | 0.8 | -0.5                     | 0.8  | V    |
| I <sub>IX</sub>  | Input Load Current                          | $GND \le V_1 \le V_{CC}$                                                                                                                                |                                            | -1                       | +1  | -1                       | +1   | μΑ   |
| l <sub>OZ</sub>  | Output Leakage Current                      | GND ≤ V <sub>OUT</sub> ≤ V <sub>CC</sub> , Ou                                                                                                           | tput Disabled                              | -1                       | +1  | -1                       | +1   | μΑ   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating                   | $V_{CC} = Max., f = f_{MAX} =$                                                                                                                          | Comm'l                                     |                          | 190 |                          | 170  | mA   |
|                  | Supply Current                              | 1/t <sub>RC</sub>                                                                                                                                       | Ind'l                                      |                          | -   |                          | 190  | mA   |
| I <sub>SB1</sub> | Automatic CE Power-Down Current —TTL Inputs | $\begin{aligned} &\text{Max. } V_{CC}, \overline{CE} \geq V_{IH} \\ &V_{IN} \geq V_{IH} \text{ or } \\ &V_{IN} \leq V_{IL},  f = f_{MAX} \end{aligned}$ |                                            |                          | 40  |                          | 40   | mA   |
| I <sub>SB2</sub> | Automatic CE                                | Max. V <sub>CC</sub> ,                                                                                                                                  | Com'l/Ind'l                                |                          | 8   |                          | 8    | mA   |
|                  | Power-Down Current —CMOS Inputs             | $\overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V,$ or $V_{IN} \le 0.3V,$ f = 0                                                              | Com'l L                                    |                          | 0.5 |                          | 0.5  | mA   |

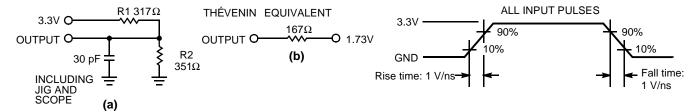
### Notes:

Document #: 38-05168 Rev. \*\*

V<sub>IL</sub> (min.) = -2.0V for pulse durations of less than 20 ns.
 T<sub>A</sub> is the "Instant On" case temperature.



# **Electrical Characteristics** Over the Operating Range (continued)


|                  |                                             | Test Conditions                                                                                                                                                                             |            | -    | -17                   |      | -20                      | -25  |                       |      |
|------------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|-----------------------|------|--------------------------|------|-----------------------|------|
| Parameter        | Description                                 |                                                                                                                                                                                             |            | Min. | Max.                  | Min. | Max.                     | Min. | Max.                  | Unit |
| V <sub>OH</sub>  | Output HIGH Voltage                         | $V_{CC} = Min., I_{OH} = -4.0$                                                                                                                                                              | mA         | 2.4  |                       | 2.4  |                          | 2.4  |                       | V    |
| V <sub>OL</sub>  | Output LOW Voltage                          | $V_{CC} = Min., I_{OL} = 8.0 r$                                                                                                                                                             | nΑ         |      | 0.4                   |      | 0.4                      |      | 0.4                   | V    |
| V <sub>IH</sub>  | Input HIGH Voltage                          |                                                                                                                                                                                             |            |      | V <sub>CC</sub> + 0.5 | 2.2  | V <sub>CC</sub> +<br>0.5 | 2.2  | V <sub>CC</sub> + 0.5 | V    |
| V <sub>IL</sub>  | Input LOW Voltage <sup>[1]</sup>            |                                                                                                                                                                                             |            |      | 0.8                   | -0.5 | 0.8                      | -0.5 | 0.8                   | V    |
| I <sub>IX</sub>  | Input Load Current                          | $GND \leq V_1 \leq V_{CC}$                                                                                                                                                                  |            | -1   | +1                    | -1   | +1                       | -1   | +1                    | μΑ   |
| I <sub>OZ</sub>  | Output Leakage<br>Current                   | $\begin{array}{l} \text{GND} \leq \text{V}_{\text{OUT}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$                                                                   |            | -1   | +1                    | -1   | +1                       | -1   | +1                    | μΑ   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating                   | V <sub>CC</sub> = Max.,                                                                                                                                                                     | Comm'l     |      | 160                   |      | 150                      |      | 130                   | mA   |
|                  | Supply Current                              | $f = f_{MAX} = 1/t_{RC}$                                                                                                                                                                    | Ind'I      |      | 180                   |      | 170                      |      | 150                   |      |
| I <sub>SB1</sub> | Automatic CE Power-Down Current —TTL Inputs | $\begin{aligned} &\text{Max. V}_{CC}, \overline{CE} \ge V_{\text{IH}} \\ &V_{\text{IN}} \ge V_{\text{IH}} \text{ or} \\ &V_{\text{IN}} \le V_{\text{IL}}, f = f_{\text{MAX}} \end{aligned}$ |            |      | 40                    |      | 40                       |      | 40                    | mA   |
| I <sub>SB2</sub> | Automatic CE                                | Max. V <sub>CC</sub> ,                                                                                                                                                                      | Com'l/Ind' | I    | 8                     |      | 8                        |      | 8                     | mA   |
|                  | Power-Down Current —CMOS Inputs             |                                                                                                                                                                                             | Com'l L    |      | 0.5                   |      | 0.5                      |      | 0.5                   | mA   |

# Capacitance<sup>[3]</sup>

| Parameter        | Description Test Conditions |                                                    | Max. | Unit |
|------------------|-----------------------------|----------------------------------------------------|------|------|
| C <sub>IN</sub>  | Input Capacitance           | $T_A = 25^{\circ}C$ , $f = 1$ MHz, $V_{CC} = 3.3V$ | 8    | pF   |
| C <sub>OUT</sub> | I/O Capacitance             |                                                    | 8    | pF   |

### Note:

### **AC Test Loads and Waveforms**



Document #: 38-05168 Rev. \*\* Page 3 of 11

<sup>3.</sup> Tested initially and after any design or process changes that may affect these parameters.



# Switching Characteristics<sup>[4]</sup> Over the Operating Range

|                   |                                     | -    | 12   | -    | 15   | -17  |      |      |
|-------------------|-------------------------------------|------|------|------|------|------|------|------|
| Parameter         | Description                         | Min. | Max. | Min. | Max. | Min. | Max. | Unit |
| READ CYCLE        | Ξ                                   |      | •    | •    |      | •    |      |      |
| t <sub>RC</sub>   | Read Cycle Time                     | 12   |      | 15   |      | 17   |      | ns   |
| t <sub>AA</sub>   | Address to Data Valid               |      | 12   |      | 15   |      | 17   | ns   |
| t <sub>OHA</sub>  | Data Hold from Address Change       | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>ACE</sub>  | CE LOW to Data Valid                |      | 12   |      | 15   |      | 17   | ns   |
| t <sub>DOE</sub>  | OE LOW to Data Valid                |      | 6    |      | 7    |      | 8    | ns   |
| t <sub>LZOE</sub> | OE LOW to Low Z                     | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>HZOE</sub> | OE HIGH to High Z <sup>[5, 6]</sup> |      | 6    |      | 7    |      | 7    | ns   |
| t <sub>LZCE</sub> | CE LOW to Low Z <sup>[6]</sup>      | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>HZCE</sub> | CE HIGH to High Z <sup>[5, 6]</sup> |      | 6    |      | 7    |      | 7    | ns   |
| t <sub>PU</sub>   | CE LOW to Power-Up                  | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>PD</sub>   | CE HIGH to Power-Down               |      | 12   |      | 15   |      | 17   | ns   |
| t <sub>DBE</sub>  | Byte Enable to Data Valid           |      | 6    |      | 7    |      | 7    | ns   |
| t <sub>LZBE</sub> | Byte Enable to Low Z                | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>HZBE</sub> | Byte Disable to High Z              |      | 6    |      | 7    |      | 8    | ns   |
| WRITE CYCL        | <b>E</b> <sup>[7, 8]</sup>          |      | •    |      | •    |      |      |      |
| t <sub>WC</sub>   | Write Cycle Time                    | 12   |      | 15   |      | 17   |      | ns   |
| t <sub>SCE</sub>  | CE LOW to Write End                 | 10   |      | 12   |      | 12   |      | ns   |
| t <sub>AW</sub>   | Address Set-Up to Write End         | 10   |      | 12   |      | 12   |      | ns   |
| t <sub>HA</sub>   | Address Hold from Write End         | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>SA</sub>   | Address Set-Up to Write Start       | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>PWE</sub>  | WE Pulse Width                      | 10   |      | 12   |      | 12   |      | ns   |
| t <sub>SD</sub>   | Data Set-Up to Write End            | 7    |      | 8    |      | 9    |      | ns   |
| t <sub>HD</sub>   | Data Hold from Write End            | 0    |      | 0    |      | 0    |      | ns   |
| t <sub>LZWE</sub> | WE HIGH to Low Z <sup>[6]</sup>     | 3    |      | 3    |      | 3    |      | ns   |
| t <sub>HZWE</sub> | WE LOW to High Z <sup>[5, 6]</sup>  |      | 6    |      | 7    |      | 8    | ns   |
| t <sub>BW</sub>   | Byte Enable to End of Write         | 10   |      | 12   |      | 12   |      | ns   |

### Notes:

- Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified loL/loH and 30-pF load capacitance.
   thace, thace, and thawe are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.
   At any given temperature and voltage condition, thace, thace is less than thace, and thack is less than thace.
   The internal write time of the memory is defined by the overlap of CE LOW, and WE LOW. CE and WE must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
   The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of that the signal that terminates the write.

Page 4 of 11 Document #: 38-05168 Rev. \*\*

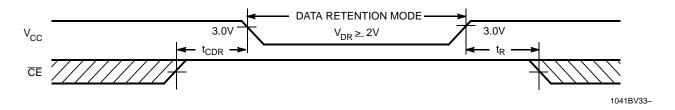


# $\textbf{Switching Characteristics}^{[4]} \ \text{Over the Operating Range (continued)}$

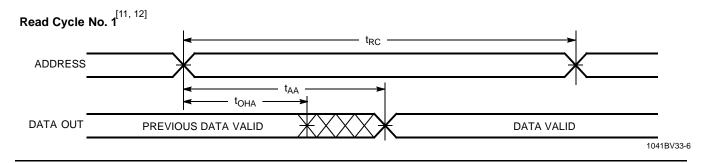
|                   |                                     | -2       | 20   | -:   | 25   |      |
|-------------------|-------------------------------------|----------|------|------|------|------|
| Parameter         | Description                         | Min.     | Max. | Min. | Max. | Unit |
| READ CYCI         | E                                   | 1        |      |      |      |      |
| t <sub>RC</sub>   | Read Cycle Time                     | 20       |      | 25   |      | ns   |
| t <sub>AA</sub>   | Address to Data Valid               |          | 20   |      | 25   | ns   |
| t <sub>OHA</sub>  | Data Hold from Address Change       | 3        |      | 5    |      | ns   |
| t <sub>ACE</sub>  | CE LOW to Data Valid                |          | 20   |      | 25   | ns   |
| t <sub>DOE</sub>  | OE LOW to Data Valid                |          | 8    |      | 10   | ns   |
| t <sub>LZOE</sub> | OE LOW to Low Z                     | 0        |      | 0    |      | ns   |
| t <sub>HZOE</sub> | OE HIGH to High Z <sup>[5, 6]</sup> |          | 8    |      | 10   | ns   |
| t <sub>LZCE</sub> | CE LOW to Low Z <sup>[6]</sup>      | 3        |      | 5    |      | ns   |
| t <sub>HZCE</sub> | CE HIGH to High Z <sup>[5, 6]</sup> |          | 8    |      | 10   | ns   |
| t <sub>PU</sub>   | CE LOW to Power-Up                  | 0        |      | 0    |      | ns   |
| t <sub>PD</sub>   | CE HIGH to Power-Down               |          | 20   |      | 25   | ns   |
| t <sub>DBE</sub>  | Byte Enable to Data Valid           |          | 8    |      | 10   | ns   |
| t <sub>LZBE</sub> | Byte Enable to Low Z                | 0        |      | 0    |      | ns   |
| t <sub>HZBE</sub> | Byte Disable to High Z              |          | 8    |      | 10   | ns   |
| WRITE CYC         | LE <sup>[7, 8]</sup>                | <u>.</u> |      |      |      |      |
| t <sub>WC</sub>   | Write Cycle Time                    | 20       |      | 25   |      | ns   |
| t <sub>SCE</sub>  | CE LOW to Write End                 | 13       |      | 15   |      | ns   |
| t <sub>AW</sub>   | Address Set-Up to Write End         | 13       |      | 15   |      | ns   |
| t <sub>HA</sub>   | Address Hold from Write End         | 0        |      | 0    |      | ns   |
| t <sub>SA</sub>   | Address Set-Up to Write Start       | 0        |      | 0    |      | ns   |
| t <sub>PWE</sub>  | WE Pulse Width                      | 13       |      | 15   |      | ns   |
| t <sub>SD</sub>   | Data Set-Up to Write End            | 9        |      | 10   |      | ns   |
| t <sub>HD</sub>   | Data Hold from Write End            | 0        |      | 0    |      | ns   |
| t <sub>LZWE</sub> | WE HIGH to Low Z <sup>[6]</sup>     | 3        |      | 5    |      | ns   |
| t <sub>HZWE</sub> | WE LOW to High Z <sup>[5, 6]</sup>  |          | 8    |      | 10   | ns   |
| t <sub>BW</sub>   | Byte Enable to End of Write         | 13       |      | 15   |      | ns   |

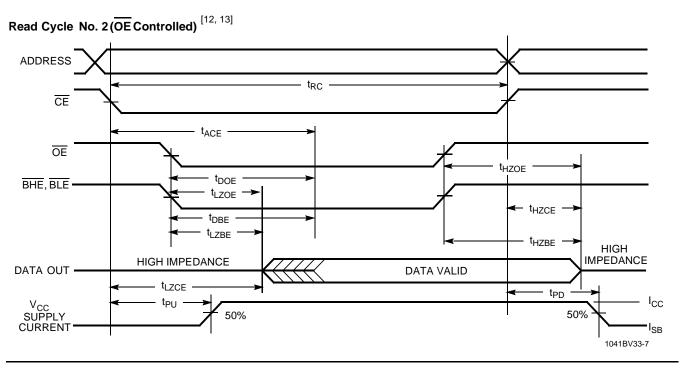
# Data Retention Characteristics Over the Operating Range (For L version only)

| Parameter                       | Description                             | Description Conditions <sup>[10]</sup>                                                 |                 | Max. | Unit |
|---------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------|-----------------|------|------|
| V <sub>DR</sub>                 | V <sub>CC</sub> for Data Retention      |                                                                                        | 2.0             |      | V    |
| I <sub>CCDR</sub>               | Data Retention Current                  | $\frac{V_{CC}}{CE} = V_{DR} = 2.0V,$                                                   |                 | 330  | μΑ   |
| t <sub>CDR</sub> <sup>[3]</sup> | Chip Deselect to Data<br>Retention Time | $\overline{CE} \ge V_{CC} - 0.3V$ ,<br>$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$ | 0               |      | ns   |
| t <sub>R</sub> <sup>[9]</sup>   | Operation Recovery Time                 |                                                                                        | t <sub>RC</sub> |      | ns   |


### Notes:

9. t<sub>r</sub> ≤ 3 ns for the -12 and -15 speeds. t<sub>r</sub> ≤ 5 ns for the -20 and slower speeds.
10. No input may exceed V<sub>CC</sub> + 0.5V.


Page 5 of 11 Document #: 38-05168 Rev. \*\*



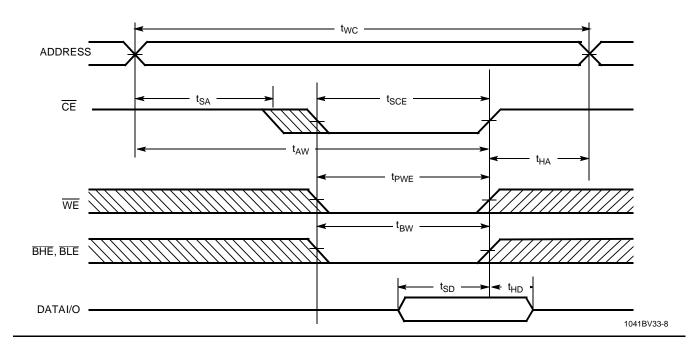

### **Data Retention Waveform**



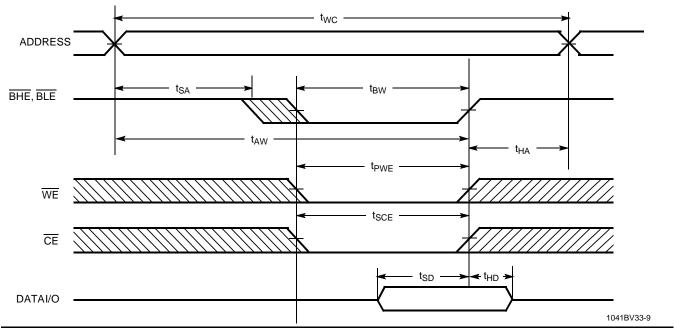
### **Switching Waveforms**






- Device is continuously selected. OE, CE, BHE and/or BHE = V<sub>IL</sub>.
   WE is HIGH for read cycle.
   Address valid prior to or coincident with CE transition LOW.

[+] Feedback

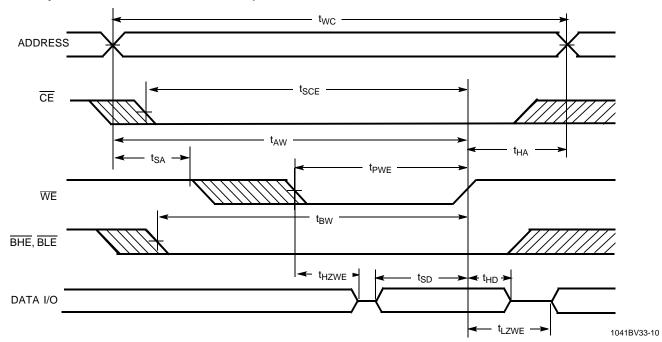



# Switching Waveforms (continued)

# Write Cycle No. 1 (CE Controlled) [14, 15]



### Write Cycle No. 2 (BLE or BHE Controlled)




14. Data I/O is high-impedance if OE or BHE and/or BLE= V<sub>IH</sub>.
15. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.



# Switching Waveforms (continued)

# Write Cycle No.3 (WE Controlled, OE LOW)

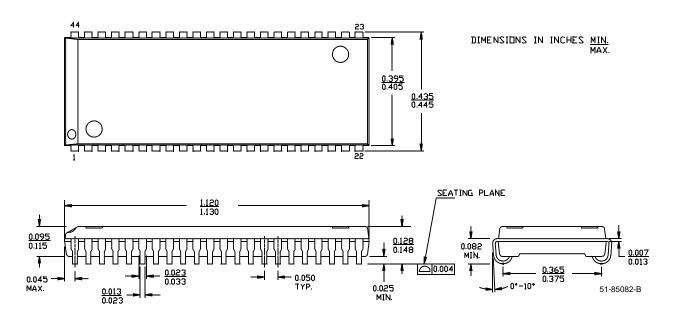


### **Truth Table**

| CE | OE | WE | BLE | BHE | I/O <sub>0</sub> –I/O <sub>7</sub> | I/O <sub>8</sub> -I/O <sub>15</sub> | Mode                       | Power                      |
|----|----|----|-----|-----|------------------------------------|-------------------------------------|----------------------------|----------------------------|
| Н  | Х  | Χ  | Χ   | Х   | High Z                             | High Z                              | Power Down                 | Standby (I <sub>SB</sub> ) |
| L  | L  | Н  | L   | L   | Data Out                           | Data Out                            | Read All Bits              | Active (I <sub>CC</sub> )  |
| L  | L  | Н  | L   | Н   | Data Out                           | High Z                              | Read Lower Bits Only       | Active (I <sub>CC</sub> )  |
| L  | L  | Н  | Н   | L   | High Z                             | Data Out                            | Read Upper Bits Only       | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | L   | L   | Data In                            | Data In                             | Write All Bits             | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | L   | Н   | Data In                            | High Z                              | Write Lower Bits Only      | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | Н   | L   | High Z                             | Data In                             | Write Upper Bits Only      | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | Χ   | Х   | High Z                             | High Z                              | Selected, Outputs Disabled | Active (I <sub>CC</sub> )  |



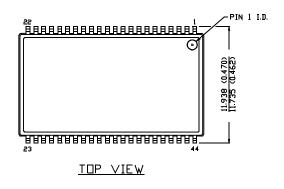
# **Ordering Information**

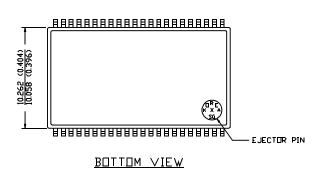

| Speed<br>(ns) | Ordering Code      | Package<br>Name | Package Type                 | Operating<br>Range |
|---------------|--------------------|-----------------|------------------------------|--------------------|
| 12            | CY7C1041BV33-12VC  | V34             | 44-Lead (400-Mil) Molded SOJ | Commercial         |
|               | CY7C1041BV33L-12VC | V34             | 44-Lead (400-Mil) Molded SOJ |                    |
|               | CY7C1041BV33-12ZC  | Z44             | 44-Pin TSOP II Z44           |                    |
|               | CY7C1041BV33L-12ZC | Z44             | 44-Pin TSOP II Z44           |                    |
| 15            | CY7C1041BV33-15VC  | V34             | 44-Lead (400-Mil) Molded SOJ | Commercial         |
|               | CY7C1041BV33L-15VC | V34             | 44-Lead (400-Mil) Molded SOJ |                    |
|               | CY7C1041BV33-15ZC  | Z44             | 44-Pin TSOP II Z44           |                    |
|               | CY7C1041BV33L-15ZC | Z44             | 44-Pin TSOP II Z44           |                    |
|               | CY7C1041BV33-15VI  | V34             | 44-Lead (400-Mil) Molded SOJ | Industrial         |
|               | CY7C1041BV33-15ZI  | Z44             | 44-Pin TSOP II Z44           |                    |
| 17            | CY7C1041BV33-17VC  | V34             | 44-Lead (400-Mil) Molded SOJ | Commercial         |
|               | CY7C1041BV33L-17VC | V34             | 44-Lead (400-Mil) Molded SOJ |                    |
|               | CY7C1041BV33-17ZC  | Z44             | 44-Pin TSOP II Z44           |                    |
|               | CY7C1041BV33L-17ZC | Z44             | 44-Pin TSOP II Z44           |                    |
|               | CY7C1041BV33-17VI  | V34             | 44-Lead (400-Mil) Molded SOJ | Industrial         |
|               | CY7C1041BV33-17ZI  | Z44             | 44-Pin TSOP II Z44           |                    |
| 20            | CY7C1041BV33-20VC  | V34             | 44-Lead (400-Mil) Molded SOJ | Commercial         |
|               | CY7C1041BV33L-20VC | V34             | 44-Lead (400-Mil) Molded SOJ |                    |
|               | CY7C1041BV33-20ZC  | Z44             | 44-Pin TSOP II Z44           |                    |
|               | CY7C1041BV33L-20ZC | Z44             | 44-Pin TSOP II Z44           |                    |
|               | CY7C1041BV33-20VI  | V34             | 44-Lead (400-Mil) Molded SOJ | Industrial         |
|               | CY7C1041BV33-20ZI  | Z44             | 44-Pin TSOP II Z44           |                    |
| 25            | CY7C1041BV33-25VC  | V34             | 44-Lead (400-Mil) Molded SOJ | Commercial         |
|               | CY7C1041BV33L-25VC | V34             | 44-Lead (400-Mil) Molded SOJ |                    |
|               | CY7C1041BV33-25ZC  | Z44             | 44-Pin TSOP II Z44           |                    |
|               | CY7C1041BV33L-25ZC | Z44             | 44-Pin TSOP II Z44           |                    |
|               | CY7C1041BV33-25VI  | V34             | 44-Lead (400-Mil) Molded SOJ | Industrial         |
|               | CY7C1041BV33-25ZI  | Z44             | 44-Pin TSOP II Z44           |                    |

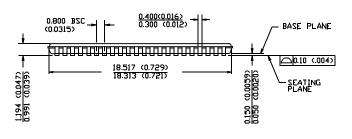
Document #: 38-05168 Rev. \*\* Page 9 of 11

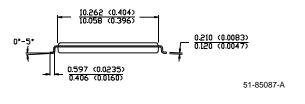


### **Package Diagrams**


### 44-Lead (400-Mil) Molded SOJ V34





### 44-Pin TSOP II Z44


DIMENSION IN MM (INCH)

MAX
MIN.









Document #: 38-05168 Rev. \*\*

Page 10 of 11

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.



| Document Title: CY7C1041BV33 256K x 16 SRAM<br>Document Number: 38-05168 |         |               |                    |                                               |  |  |  |  |
|--------------------------------------------------------------------------|---------|---------------|--------------------|-----------------------------------------------|--|--|--|--|
| REV.                                                                     | ECN NO. | Issue<br>Date | Orig. of<br>Change | Description of Change                         |  |  |  |  |
| **                                                                       | 111840  | 11/17/01      | DSG                | Change from Spec number: 38-00932 to 38-05168 |  |  |  |  |

Document #: 38-05168 Rev. \*\* Page 11 of 11