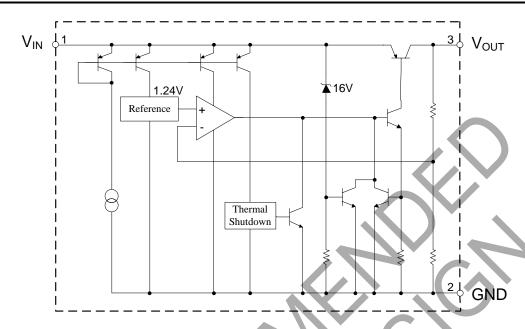


Pin Assignments (Cont.)

Typical Applications Circuit (Note 4)


Note 4: C_{IN} is required if regulator is located far from power supply filter and is recommended to be $0.47\mu F$ or greater. To maintain stability, C_{OUT} is recommended to be $2.2\mu F$ or greater. The ESR of this capacitor is critical, please see curve.

Pin Description

Pin Number	Pin Name	Function
1	VIN	Unregulated Input
2	GND	Ground pin. This pin and TAB are internally connected
3	Vouт	Regulated Output

Functional Block Diagram

Absolute Maximum Ratings (Note 5)

Symbol	Parameter	Rating		Unit
Vin	Input Voltage	16		V
TJ	Operating Junction Temperature	+150		°C
Tstg	Storage Temperature Range	-65 to +1:	50	°C
T _{LEAD}	Lead Temperature (Soldering, 10sec)	+260	+260	
			60	
		TO-263-3		2011
θμα	Thermal Resistance (Junction to Ambient)	TO-252-2 (3)/(4)/(5)	100	°C/W
		SOT-223	120	
ESD	ESD (Human Body Model)	5000		V
ESD	ESD (Machine Model)	300		V

Note: 5. Stresses greater than those listed under *Absolute Maximum Ratings* can cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under *Recommended Operating Conditions* is not implied. Exposure to *Absolute Maximum Ratings* for extended periods can affect device reliability.

Recommended Operating Conditions

Symbol	mbol Parameter Min		Max	Unit
V _{IN}	Input Voltage	2.5	13.2	V
TJ	Operating Junction Temperature	-40	+125	°C

Electrical Characteristics

AZ2940-1.2 Electrical Characteristics

(Operating Conditions: V_{IN} = 2.5V, I_{OUT} = 10mA, C_{IN} = 10 μ F, C_{OUT} = 10 μ F, T_J = +25°C, unless otherwise specified. The **Boldface** applies over -40°C to +125°C)

Symbol	Parameter	Co	ondition	Min	Тур	Max	Unit
.,		I _{OUT} = 10mA		1.188	1.2	1.212	٧
Vout	Output Voltage	10mA ≤ I _{OUT} ≤ 1A, 2.5V ≤ V _{IN} ≤ 13.2V		1.176	1.2	1.224	٧
VRLINE	Line Regulation	I _{OUT} = 10mA, 2.5	5V ≤ V _{IN} ≤ 13.2V	-	3.6	18	mV
VRLOAD	Load Regulation	V _{IN} = 2.5V, 10m/	A ≤ I _{OUT} ≤ 1A	-	5.4	27	mV
ΔV _{OUT} /ΔΤ	Output Voltage Temperature Coefficient	I _{OUT} = 10mA			-	180	μV/°C
	0 10 1)	I _{OUT} = 750mA		12	25	mA
IGND	Ground Current	V _{IN} = 2.5V	I _{OUT} = 1A	-	18	-	mA
Isc	Short Circuit Current	V _{OUT} = 0V (Note	: 6)	1.5	2.2	_	Α
ILOAD (MIN)	Minimum Load Current	-			1	5	mA
_	Output Noise Voltage (rms)	10Hz to 100kHz C _{OUT} = 10μF	, I _{OUT} = 100mA,	1-1	400	_	μV
			TO-252-2 (3)/(4)/(5)		7.8	_	2000
θις	Thermal Resistance	SOT-223		Y-	29.7	_	°C/W

Note 6: $V_{IN} = V_{OUT(NOMINAL)} + 1V$.

AZ2940-1.8 Electrical Characteristics

(Operating Conditions: $V_{IN} = 2.8V$, $I_{OUT} = 10mA$, $C_{IN} = 10\mu F$, $C_{OUT} = 10\mu F$, $T_{J} = +25^{\circ}C$, unless otherwise specified. The **Boldface** applies over $-40^{\circ}C$ to $+125^{\circ}C$)

Symbol	Parameter	С	ondition	Min	Тур	Max	Unit
.,		I _{OUT} = 10mA		1.782	1.8	1.818	٧
Vouт	Output Voltage	10mA ≤ I _{OUT} ≤ 1	A, 2.8V ≤ V _{IN} ≤ 13.2V	1.764	1.8	1.836	V
VRLINE	Line Regulation	I _{OUT} = 10mA, 2.	8V ≤ V _{IN} ≤ 13.2V	-	3.6	18	mV
VRLOAD	Load Regulation	V _{IN} = 2.8V, 10m.	A ≤ I _{OUT} ≤ 1A	-	5.4	27	mV
ΔV _{OUT} /ΔΤ	Output Voltage Temperature Coefficient	I _{OUT} = 10mA			36	180	μV/°C
.,	D 11/1 (11 1 7)		I _{OUT} = 100mA		290	500	mV
VDROP	Dropout Voltage (Note 7)	ΔV _{OUT} = 1%	I _{OUT} = 1A	-	330	750	mV
		.,	I _{OUT} = 750mA	-	12	25	mA
IGND	Ground Current	V _{IN} = 2.8V	IOUT = 1A		18	_	mA
Isc	Short Circuit Current	V _{OUT} = 0V (Note	e 6)	1.5	2.2	_	Α
ILOAD (MIN)	Minimum Load Current	-		/-,	1	5	mA
_	Output Noise Voltage (rms)	10Hz to 100kHz, lout = 100mA, Cout = 10µF		\ <u></u>	400	_	μV
0	Thermal Decistores	TO-252-2 (3)/(4)/(5)		_	7.8	_	0000
θιс	Thermal Resistance	SOT-223		_	29.7	_	°C/W

^{6.} $V_{IN} = V_{OUT(NOMINAL)} + 1V$.

^{7.} Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value which is measured at V_{OUT}+1V applied to V_{IN}. In application, V_{IN} should be no less than 2.5V.

AZ2940-2.5 Electrical Characteristics

(Operating Conditions: $V_{IN} = 3.5V$, $I_{OUT} = 10mA$, $C_{IN} = 10\mu F$, $C_{OUT} = 10\mu F$, $T_{J} = +25^{\circ}C$, unless otherwise specified. The **Boldface** applies over $-40^{\circ}C$ to $+125^{\circ}C$)

Symbol	Parameter	С	ondition	Min	Тур	Max	Unit
.,	0 1 11/1	I _{OUT} = 10mA		2.475	2.5	2.525	٧
Vouт	Output Voltage	10mA ≤ I _{OUT} ≤ 1	A, 3.5V ≤ V _{IN} ≤ 13.2V	2.45	2.5	2.55	٧
VRLINE	Line Regulation	I _{OUT} = 10mA, 3.	5V ≤ V _{IN} ≤ 13.2V	-	5.0	25	mV
VRLOAD	Load Regulation	V _{IN} = 3.5V, 10m.	A ≤ I _{OUT} ≤ 1A	-	7.5	37.5	mV
ΔV _{OUT} /ΔΤ	Output Voltage Temperature Coefficient	I _{OUT} = 10mA			50	250	μV/°C
.,	D 11/1 (11 1 0)		I _{OUT} = 100mA		70	200	mV
VDROP	Dropout Voltage (Note 8)	ΔV _{OUT} = 1%	I _{OUT} = 1A	-	280	550	mV
			I _{OUT} = 750mA	-	12	25	mA
IGND	Ground Current	V _{IN} = 3.5V	Iout = 1A		18	_	mA
Isc	Short Circuit Current	V _{OUT} = 0V (Note	e 6)	1.5	2.2	_	Α
ILOAD (MIN)	Minimum Load Current	-		/-,	1	5	mA
_	Output Noise Voltage (rms)	10Hz to 100kHz, louτ = 100mA, Couτ = 10μF		\ <u></u>	400	_	μV
0	Thermal Decistores	TO-252-2 (3)/(4	4)/(5)	_	7.8	_	0000
θις	Thermal Resistance	SOT-223		_	29.7	_	°C/W

- 6. $V_{IN} = V_{OUT(NOMINAL)} + 1V$.
- 8. Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value which is measured at V_{OUT}+1V applied to V_{IN}.

AZ2940-3.3 Electrical Characteristics

(Operating Conditions: $V_{IN} = 4.3V$, $I_{OUT} = 10mA$, $C_{IN} = 10\mu F$, $C_{OUT} = 10\mu F$, $T_{J} = +25^{\circ}C$, unless otherwise specified. The **Boldface** applies over $-40^{\circ}C$ to $+125^{\circ}C$)

Symbol	Parameter	C	ondition	Min	Тур	Max	Unit
.,		I _{OUT} = 10mA		3.27	3.3	3.33	V
Vout	Output Voltage	10mA ≤ I _{OUT} ≤ 1	10mA ≤ I _{OUT} ≤ 1A, 4.3V ≤ V _{IN} ≤ 13.2V		3.3	3.37	٧
VRLINE	Line Regulation	I _{OUT} = 10mA, 4.3	3V ≤ V _{IN} ≤ 13.2V	-	6.6	33	mV
VRLOAD	Load Regulation	V _{IN} = 4.3V, 10m/	A ≤ I _{OUT} ≤ 1A	-	9.9	50	mV
ΔV _{OUT} /ΔΤ	Output Voltage Temperature Coefficient	I _{OUT} = 10mA			66	330	μV/°C
.,	December (Alata O)	40/	I _{OUT} = 100mA		70	200	mV
VDROP	Dropout Voltage (Note 8)	ΔV _{OUT} = 1%	I _{OUT} = 1A	-	280	550	mV
	0		I _{OUT} = 750mA	-	12	25	mA
IGND	Ground Current	V _{IN} = 4.3V	Iout = 1A		18	_	mA
Isc	Short Circuit Current	Vout = 0V (Note	: 6)	1.5	2.2	_	Α
ILOAD (MIN)	Minimum Load Current	-		/-,	1	5	mA
_	Output Noise Voltage (rms)	10Hz to 100kHz Couτ = 10μF	, lout = 100mA,	\ <u></u>	400	_	μV
		TO-220-3		-	4.4	_	
	Ti ID ii	TO-263-3		_	4.4	_	00.00
θιс	Thermal Resistance	TO-252-2 (3)/(4)/(5)		_	7.8	_	°C/W
		SOT-223		_	29.7	_	

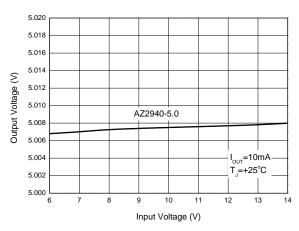
^{6.} $V_{IN} = V_{OUT(NOMINAL)} + 1V$.

^{8.} Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value which is measured at V_{OUT}+1V applied to V_{IN}.

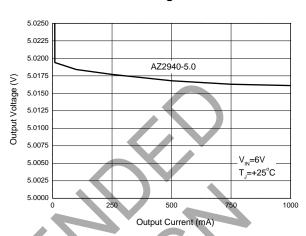
AZ2940-5.0 Electrical Characteristics

(Operating Conditions: $V_{IN} = 6V$, $I_{OUT} = 10mA$, $C_{IN} = 10\mu F$, $C_{OUT} = 10\mu F$, $T_{J} = +25^{\circ}C$, unless otherwise specified. The **Boldface** applies over -40°C to +125°C)

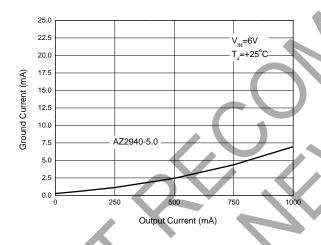
Symbol	Parameter	C	ondition	Min	Тур	Max	Unit
.,	0.1.1111	I _{OUT} = 10mA		4.95	5.0	5.05	٧
Vouт	Output Voltage	10mA ≤ I _{OUT} ≤ 1	A, 6V ≤ V _{IN} ≤ 13.2V	4.90	5.0	5.10	٧
VRLINE	Line Regulation	I _{OUT} = 10mA, 6V	′ ≤ V _{IN} ≤ 13.2V	-	10	50	mV
VRLOAD	Load Regulation	V _{IN} = 6V, 10mA	≤ I _{OUT} ≤ 1A	-	15	75	mV
ΔV _{OUT} /ΔΤ	Output Voltage Temperature Coefficient	I _{OUT} = 10mA			100	500	μV/°C
	December 1 / alterna (Alata O)	40/	I _{OUT} = 100mA		70	200	mV
VDROP	Dropout Voltage (Note 8)	∆V _{OUT} = 1%	I _{OUT} = 1A	-	280	550	mV
			I _{OUT} = 750mA	- •	12	25	mA
Ignd	Ground Current	V _{IN} = 6V			18	_	mA
Isc	Short Circuit Current	V _{OUT} = 0V (Note	: 6)	1.5	2.2	_	Α
ILOAD (MIN)	Minimum Load Current	-		/-,	1	5	mA
_	Output Noise Voltage (rms)	10Hz to 100kHz Couτ = 10μF	, lout = 100mA,	_	400	_	μV
		TO-220-3/TO-22	20F-3	_	4.4	_	
	The second Decision of	TO-263-3		_	4.4	-	0044
θυς	Thermal Resistance	TO-252-2 (3)/(4)/(5)		_	7.8	_	°C/W
		SOT-223		_	29.7	_	

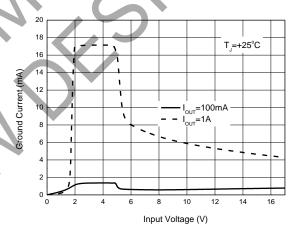

^{6.} $V_{IN} = V_{OUT(NOMINAL)} + 1V$.

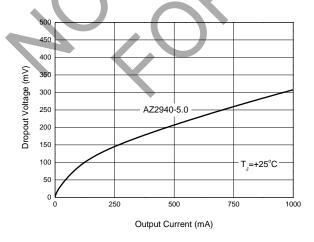
^{8.} Dropout voltage is defined as the input-to-output differential when the output voltage drops to 99% of its nominal value which is measured at V_{OUT}+1V applied to V_{IN}.

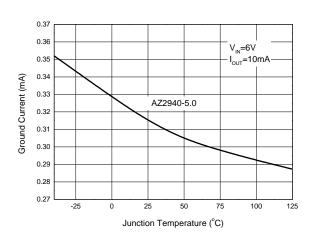


Performance Characteristics

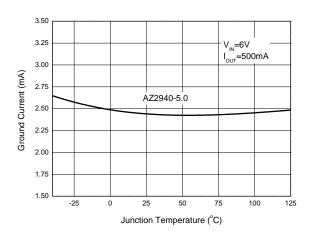


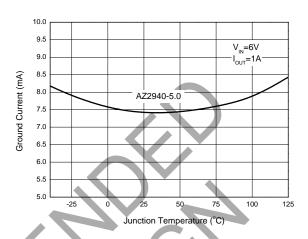

Load Regulation


Ground Current vs. Output Current

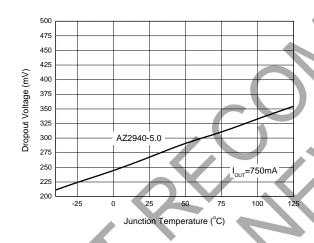

Ground Current vs. Input Voltage

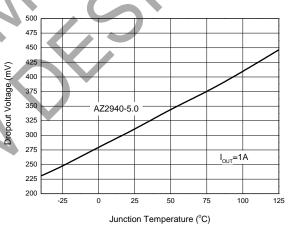
Dropout Voltage vs. Output Current

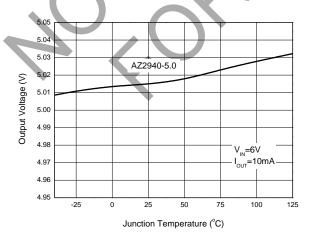

Ground Current vs. Junction Temperature

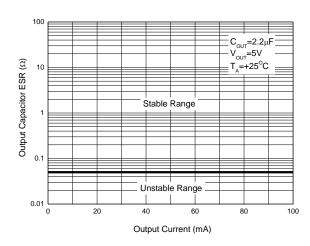


Performance Characteristics (Cont.)

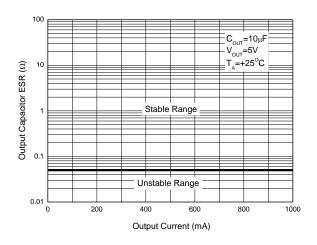

Ground Current vs. Junction Temperature

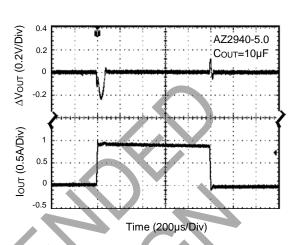

Ground Current vs. Junction Temperature


Dropout Voltage vs. Junction Temperature

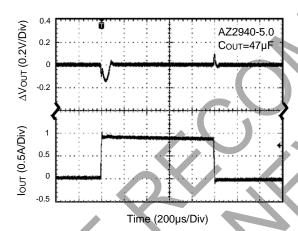

Dropout Voltage vs. Junction Temperature

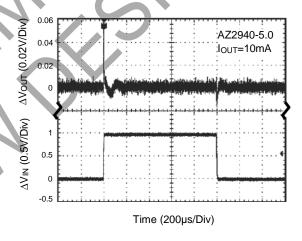
Output Voltage vs. Junction Temperature

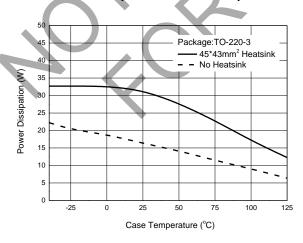

Output Capacitor ESR vs. Output Current

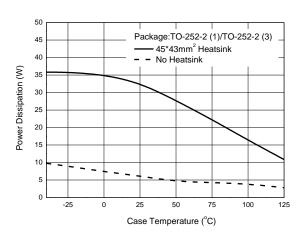


Performance Characteristics (Cont.)

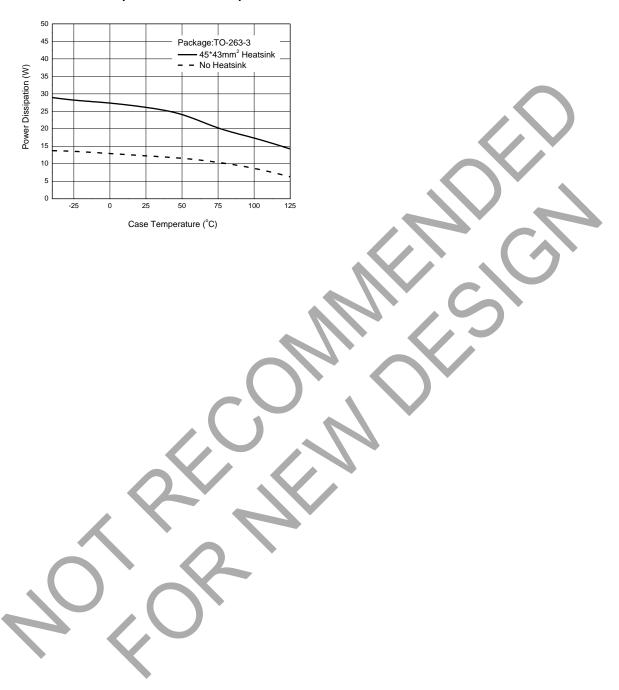

Output Capacitor ESR vs. Output Current

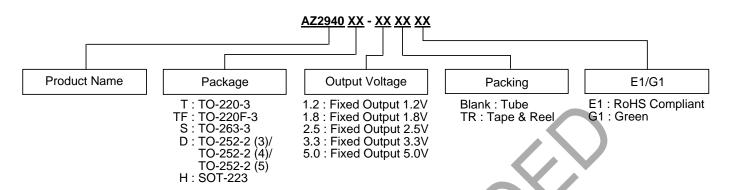

Load Transient


Load Transient


Line Transient

Power Dissipation vs. Case Temperature

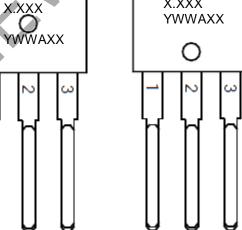

Power Dissipation vs. Case Temperature


Performance Characteristics (Cont.)

Power Dissipation vs. Case Temperature

Ordering Information

	Package	Temperature	Part N	lumber	Marking ID		Dooking
	. uonago	Range	RoHS Compliant	Green	RoHS Compliant	Green	Packing
<u>Pb</u>)		40.4 40.500	AZ2940T-3.3E1	AZ2940T-3.3G1	AZ2940T-3.3E1	AZ2940T-3.3G1	1000/Tube
Po	TO-220-3	-40 to +125°C	AZ2940T-5.0E1	AZ2940T-5.0G1	AZ2940T-5.0E1	AZ2940T-5.0G1	1000/Tube
Pb	TO-220F-3	-40 to +125°C	_	AZ2940TF-5.0G1		AZ2940TF- 5.0G1	1000/Tube
			AZ2940S-3.3E1	AZ2940S-3.3G1	AZ2940S-3.3E1	AZ2940S-3.3G1	1000/Tube
		40.45 140500	AZ2940S- 3.3TRE1	AZ2940S-3.3TRG1	AZ2940S-3.3E1	AZ2940S-3.3G1	2500/Tape & Reel
(Pb)	TO-263-3	-40 to +125°C	AZ2940S-5.0E1	AZ2940S-5.0G1	AZ2940S-5.0E1	AZ2940S-5.0G1	1000/Tube
Green			AZ2940S- 5.0TRE1	AZ2940S-5.0TRG1	AZ2940S-5.0E1	AZ2940S-5.0G1	2500/Tape & Reel
			-	AZ2940D-1.2G1		AZ2940D-1.2G1	1000/Tube
		•		AZ2940D-1.2TRG1	-	AZ2940D-1.2G1	2500/Tape & Reel
			AZ2940D-1.8E1	AZ2940D-1.8G1	AZ2940D-1.8E1	AZ2940D-1.8G1	1000/Tube
			AZ2940D- 1.8TRE1	AZ2940D-1.8TRG1	AZ2940D-1.8E1	AZ2940D-1.8G1	2500/Tape & Reel
			AZ2940D-2.5E1	AZ2940D-2.5G1	AZ2940D-2.5E1	AZ2940D-2.5G1	1000/Tube
		-40 to +125°C	AZ2940D- 2.5TRE1	AZ2940D-2.5TRG1	AZ2940D-2.5E1	AZ2940D-2.5G1	2500/Tape & Reel
(Pb)			AZ2940D-3.3E1	AZ2940D-3.3G1	AZ2940D-3.3E1	AZ2940D-3.3G1	1000/Tube
Pb	TO-252-2 (3)/ TO-252-2 (4)/	– ,(AZ2940D- 3.3TRE1	AZ2940D-3.3TRG1	AZ2940D-3.3E1	AZ2940D-3.3G1	2500/Tape & Reel
Green	TO-252-2(5)		AZ2940D-5.0E1	AZ2940D-5.0G1	AZ2940D-5.0E1	AZ2940D-5.0G1	1000/Tube
<u></u>		X	AZ2940D- 5.0TRE1	AZ2940D-5.0TRG1	AZ2940D-5.0E1	AZ2940D-5.0G1	2500/Tape & Reel



$\begin{tabular}{ll} \textbf{Ordering} & \underline{\textbf{Information}} & (Cont.) \end{tabular}$

	Temperature	Part N	umber	Markin	g ID	-
Package	Range	RoHS Compliant	Green	RoHS Compliant	Green	Packing
		_	AZ2940H- 1.2TRG1	_	GH12B	2500/Tape & Reel
		_	AZ2940H- 1.8TRG1	-	GH12F	2500/Tape & Reel
SOT-223	-40 to +125°C	_	AZ2940H- 2.5TRG1	-	GH12G	2500/Tape & Reel
		_	AZ2940H- 3.3TRG1	-	GH12H	2500/Tape & Reel
		_	AZ2940H- 5.0TRG1	-	GH12J	2500/Tape & Reel

Marking Information

(1) TO-220-3 (Front View) AZ2940T-X.XXX YWWAXX ♠ AZ2940T-X.XXX X.XXX

First and Second Lines: Logo and Marking ID

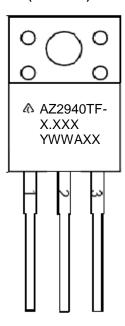
YWWAXX

(See Ordering Information) Third Line: Date Code

Y: Year

WW: Work Week of Molding A: Assembly House Code

XX: Internal Code


Downloaded from **Arrow.com.**

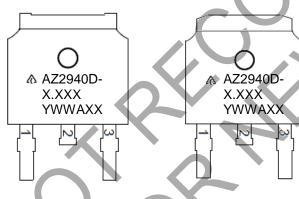
Marking Information (Cont.)

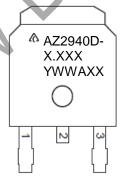
(2) TO-220F-3

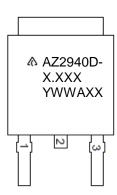
(Front View)

First and Second Lines: Logo and Marking ID

(See Ordering Information) Third Line: Date Code


Y: Year


WW: Work Week of Molding A: Assembly House Code


XX: Internal Code

(3) TO-252-2(3)/(4)/(5)

First and Second Lines: Logo and Marking ID

(See Ordering Information) Third Line: Date Code

Y: Year

WW: Work Week of Molding A: Assembly House Code


XX: Internal Code

Marking Information (Cont.)

(4) TO-263-3

(Top View)

First and Second Lines: Logo and Marking ID

(See Ordering Information) Third Line: Date Code

Y: Year

WW: Work Week of Molding A: Assembly House Code

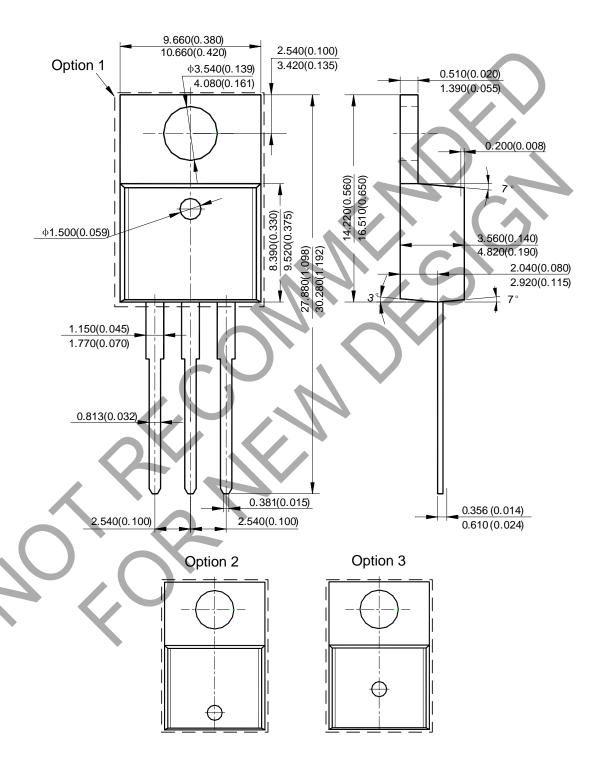
XX: Internal Code

(5) SOT-223

(Top View)

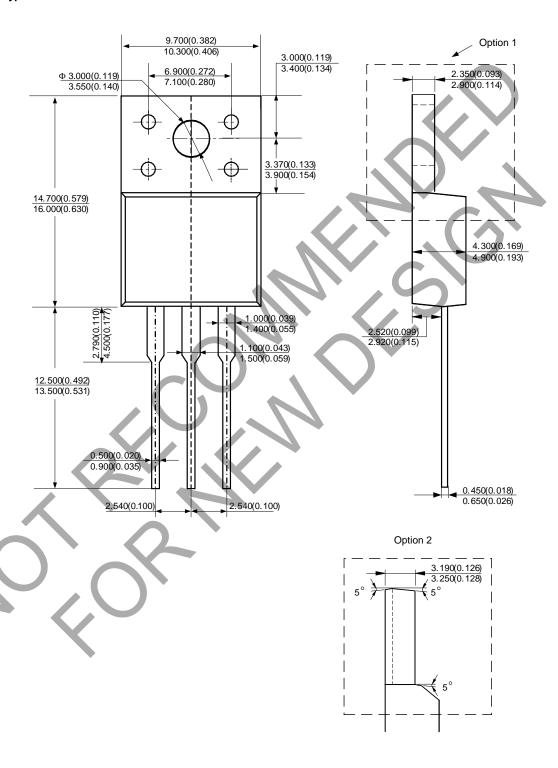
First Line: Logo and Marking ID (See Ordering Information) Second Line: Date Code

Y: Year

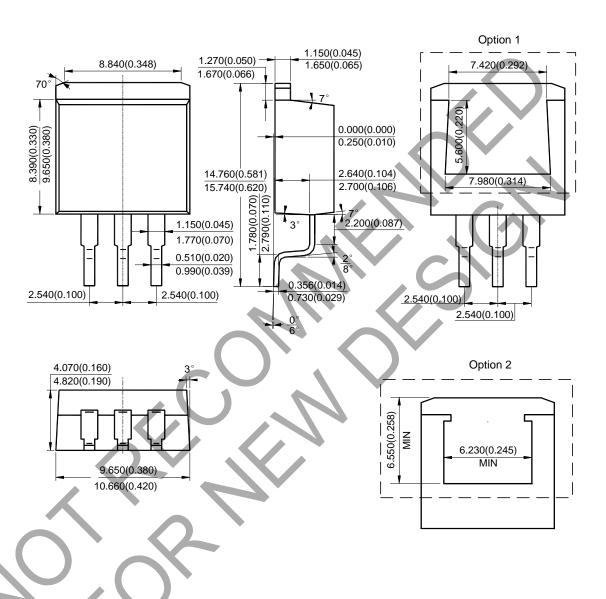

WW: Work Week of Molding A: Assembly House Code

XX: Internal Code

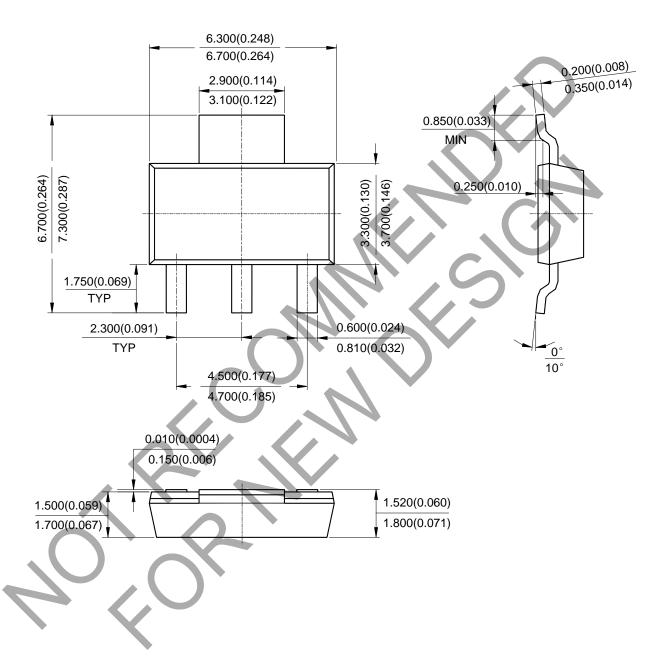
Please see http://www.diodes.com/package-outlines.html for the latest version.


(1) Package Type: TO-220-3

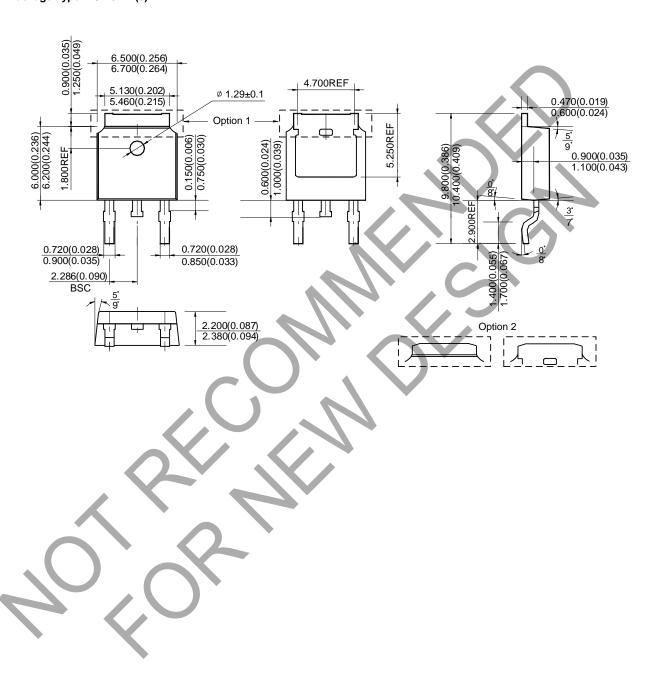
Please see http://www.diodes.com/package-outlines.html for the latest version.


(2) Package Type: TO-220F-3

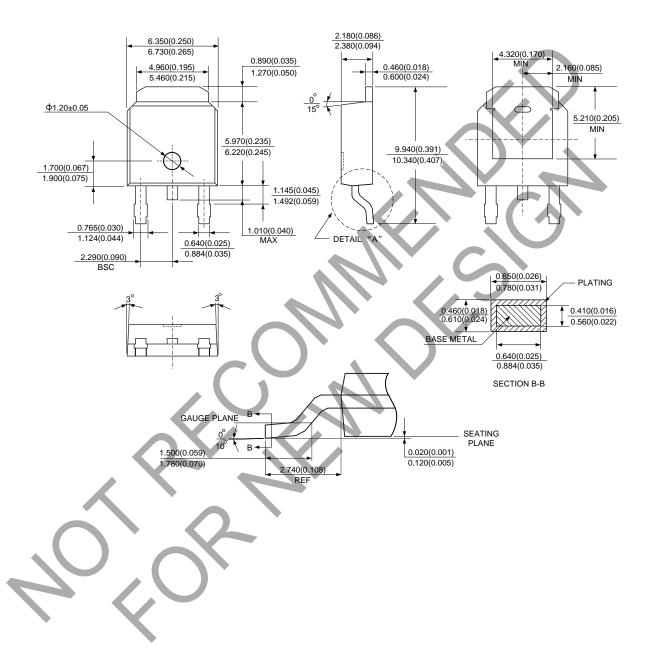
Please see http://www.diodes.com/package-outlines.html for the latest version.


(3) Package Type: TO-263-3

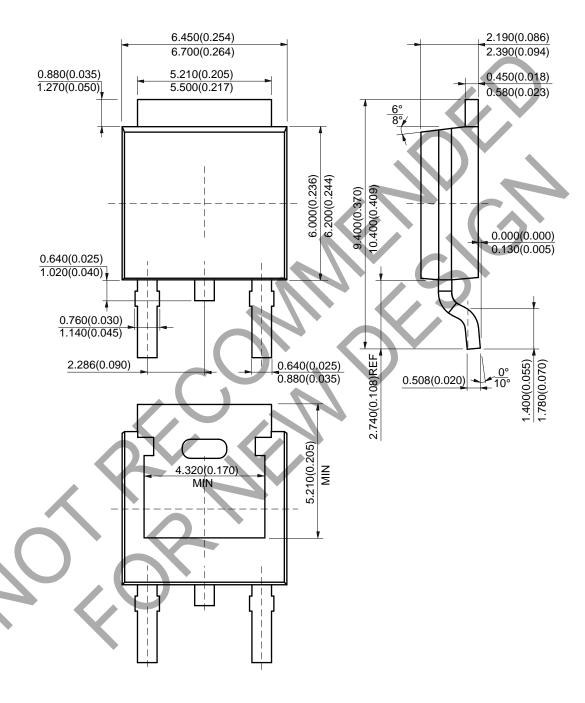
Please see http://www.diodes.com/package-outlines.html for the latest version.


(4) Package Type: SOT-223

Please see http://www.diodes.com/package-outlines.html for the latest version.

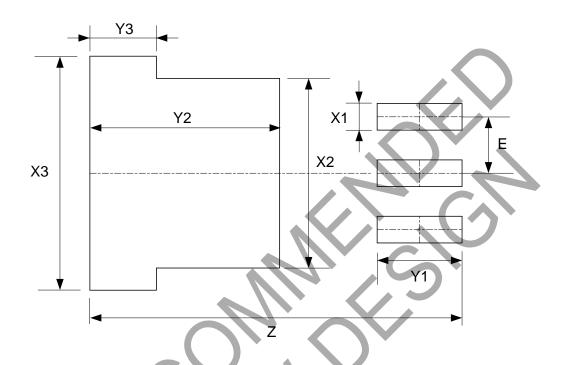

(5) Package Type: TO-252-2 (3)

Please see http://www.diodes.com/package-outlines.html for the latest version.


(6) Package Type: TO-252-2 (4)

Please see http://www.diodes.com/package-outlines.html for the latest version.

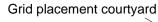
(7) Package Type: TO-252-2 (5)

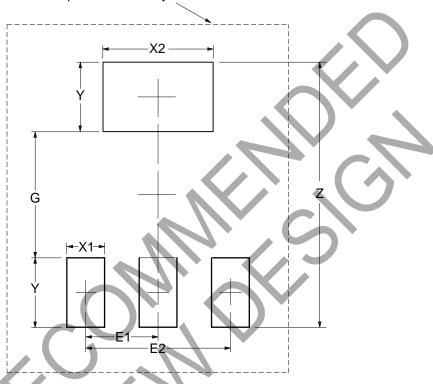


Suggested Pad Layout

Please see http://www.diodes.com/package-outlines.html for the latest version.

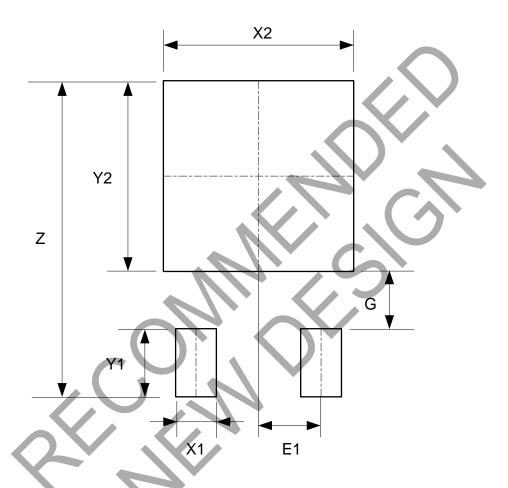
(1) Package Type: TO-263-3




Dimensions	Z	X1	X2	X3
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	16.760/0.660	16.760/0.660 1.200/0.047		10.540/0.415
Dimensions	Y1	Y2	Y3	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.830/0.151	8.560/0.337	3.000/0.118	2.540/0.100

Please see http://www.diodes.com/package-outlines.html for the latest version.

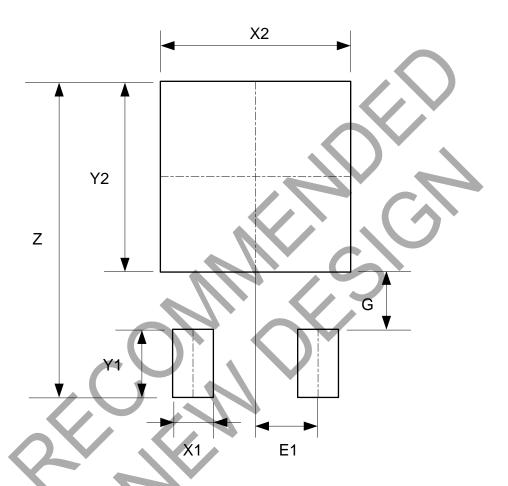
(2) Package Type: SOT-223



Dimensions	Z	G	X1	X2	Y	E1	E2
	(mm)/(inch)						
Value	8.400/0.331	4.000/0.157	1.200/0.047	3.500/0.138	2.200/0.087	2.300/0.091	4.600/0.181

Please see http://www.diodes.com/package-outlines.html for the latest version.

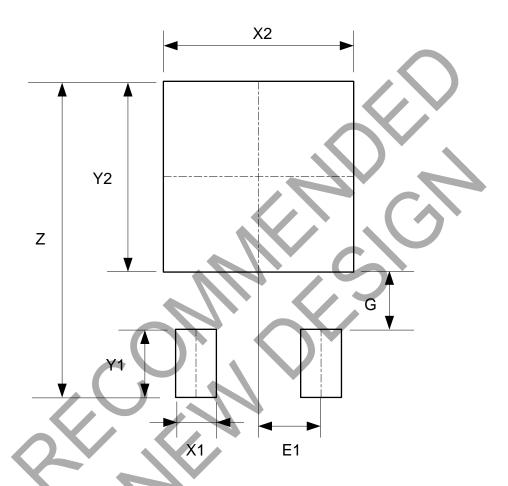
(3) Package Type: TO-252-2 (3)



Dimensions	Z	X1	X2=Y2	Y1	G	E1
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091

Please see http://www.diodes.com/package-outlines.html for the latest version.

(4) Package Type: TO-252-2 (4)



Dimensions	Z	X1	X2=Y2	Y1	G	E1
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091

Please see http://www.diodes.com/package-outlines.html for the latest version.

(5) Package Type: TO-252-2 (5)

Dimensions	Z	X1	X2=Y2	Y1	G	E1
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	11.600/0.457	1.500/0.059	7.000/0.276	2.500/0.098	2.100/0.083	2.300/0.091

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending, Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2020, Diodes Incorporated

www.diodes.com