ADG719* Product Page Quick Links

Last Content Update: 08/30/2016

Comparable Parts

View a parametric search of comparable parts

Evaluation Kits

- Evaluation Board for 6 lead SOT23 Devices in the Switches/Multiplexers Portfolio
- Evaluation Board for 8 lead MSOP Devices in the Switch/ Mux Portfolio

Documentation 🖵

Data Sheet

- ADG719-DSCC: Military Data Sheet
- ADG719-EP: Enhanced Product Data Sheet
- ADG719: CMOS Low Voltage 4 Ohm SPDT Switch Data Sheet

User Guides

- UG-893: Evaluating the 8-Lead MSOP Devices in the Switch/Mux Portfolio
- UG-948: Evaluation Board for 6-Lead SOT-23 Devices in the Switches and Multiplexers Portfolio

Tools and Simulations

ADG719 SPICE Macro Model

Reference Materials

Product Selection Guide

• Switches and Multiplexers Product Selection Guide

Technical Articles

- CMOS Switches Offer High Performance in Low Power, Wideband Applications
- · Data-acquisition system uses fault protection
- Enhanced Multiplexing for MEMS Optical Cross Connects
- Low on-resistance, one key for the perfect switch
- · Temperature monitor measures three thermal zones

Design Resources 🖵

- ADG719 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- · Symbols and Footprints

Discussions 🖵

View all ADG719 EngineerZone Discussions

Sample and Buy

Visit the product page to see pricing options

Technical Support

Submit a technical question or find your regional support number

* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to the content on this page does not constitute a change to the revision number of the product data sheet. This content may be frequently modified.

TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6

REVISION HISTORY

3/10-Rev. C to Rev. D

Removed B Version Text	Throughout
Changes to Figure 1	1
Deleted Endnote 1 (Table 1)	
Deleted Endnote 1 (Table 2)	
Changes to Figure 2	6
Changes to Ordering Guide	

12/09—Rev. B to Rev. C

Updated Format	Universal
Changes to Table 3	
Added Table 4	
Changes to Terminology Section	
Updated Outline Dimensions	
Changes to Ordering Guide	

7/02—Rev. A to Rev. B.

1
1
1
2
4
4
4
5
6
7
9

Typical Performance Characteristics	7
Test Circuits	9
Terminology	
Applications Information	
ADG719 Supply Voltages	
On Response vs. Frequency	
Off Isolation	
Outline Dimensions	
Ordering Guide	

SPECIFICATIONS

 $V_{\rm DD}$ = 5 V \pm 10%, GND = 0 V.

Table 1.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (Ron)					$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = -10 \text{ mA}$;
	2.5			Ωtyp	See Figure 14
	4	5	7	Ωmax	
On Resistance Match Between					
Channels (ΔR_{ON})		0.1		Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
		0.4	0.4	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	0.75			Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}, I_{s} = -10 \text{ mA}$
		1.2	1.5	Ωmax	
LEAKAGE CURRENTS Is (Off)					$V_{DD} = 5.5 V$
Source Off Leakage	±0.01			nA typ	$V_{\rm S} = 4.5 \text{ V/1 V}, V_{\rm D} = 1 \text{ V/4.5 V};$
	±0.25	±0.35	1	nA max	See Figure 15
Channel On Leakage I _D , I _S (On)	±0.01			nA typ	$V_{\rm S} = V_{\rm D} = 1 \text{ V or } V_{\rm S} = V_{\rm D} = 4.5 \text{ V};$
	±0.25	±0.35	5	nA max	See Figure 16
DIGITAL INPUTS	_0.25	_0.55	5	The contract	
Input High Voltage, VINH			2.4	V min	
Input Low Voltage, VINI			0.8	V max	
Input Current			0.0	VIIIdx	
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
	0.005		±0.1	μA max	
DYNAMIC CHARACTERISTICS ¹			±0.1	μππαλ	
	7			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
ton	,		12	ns max	$V_s = 3 V$; See Figure 17
toff	3		12	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
COFF	5		6	ns max	$V_s = 3 V$; See Figure 17
Proak Potoro Mako Timo Dolav t-	8		0		$RL = 300 \Omega, C_L = 35 pF,$
Break-Before-Make Time Delay, t _D	0		1	ns typ ns min	$V_{s1} = V_{s2} = 3 V$; See Figure 18
Off Isolation	-67		I		$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
On isolation				dB typ	$R_L = 50 \Omega_2$, $C_L = 5 \text{ pF}$, $f = 1 \text{ MHz}$;
	-87			dB typ	
Channel to Channel Creastelly	62			al Data una	See Figure 19
Channel-to-Channel Crosstalk	-62			dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz$
	-82			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
Pandwidth 2 dp	200			MILI - +: ···	See Figure 20 R = 50.0 C = 5 pFr Sec Figure 21
Bandwidth –3 dB	200			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; See Figure 21
C _s (Off)	7			pF typ	
C _D , C _S (On)	27			pF typ	
POWER REQUIREMENTS					$V_{DD} = 5.5 V$
					Digital inputs = 0 V or 5.5 V
l _{DD}	0.001			μA typ	
			1.0	μA max	

¹ Guaranteed by design, not subject to production test.

$V_{\rm DD}$ = 3 V \pm 10%, GND = 0 V.

Table 2.

Parameter	+25°C	–40°C to +85°C	-40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH			0 V to V _{DD}	V	
Analog Signal Range					
On Resistance (R _{ON})	6	7		Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = -10 \text{ mA}$;
		10	12	Ωmax	See Figure 14
On Resistance Match Between					
Channels (ΔR _{on})		0.1		Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = -10 \text{ mA}$
		0.4	0.4	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})		2.5		Ωtyp	$V_{s} = 0 V \text{ to } V_{DD}$, $I_{s} = -10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.3 V$
Source Off Leakage Is (Off)	±0.01			nA typ	$V_{s} = 3 V/1 V, V_{D} = 1 V/3 V;$
	±0.25	±0.35	1	nA max	See Figure 15
Channel On Leakage I _D , I _S (On)	±0.01			nA typ	$V_{s} = V_{D} = 1 V \text{ or } V_{s} = V_{D} = 3 V;$
	±0.25	±0.35	5	nA max	See Figure 16
DIGITAL INPUTS	1			1	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	µA max	
DYNAMIC CHARACTERISTICS ¹					
ton	10			ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
CON	10		15	ns max	$V_s = 2 V$; See Figure 17
toff	4		15	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
Con	•		8	ns max	$V_s = 2 V$; See Figure 17
Break-Before-Make Time Delay, t₀	8		0	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
break before make time beidy, to	Ŭ		1	ns min	$V_{s1} = V_{s2} = 2 V$; See Figure 18
Off Isolation	-67		•	dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
	-87			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
	07			abtyp	See Figure 19
Channel-to-Channel Crosstalk	-62			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$
channel to channel crosstalk	-82			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$;
	-02				See Figure 20
Bandwidth –3 dB	200			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; See Figure 21
Cs (Off)	200			pF typ	$n_L = 30.22$, $C_L = 3$ pr, see right 21
$C_{\rm D}$, $C_{\rm S}$ (On)	7 27			pF typ pF typ	
	21			рг тур	
POWER REQUIREMENTS					$V_{DD} = 3.3 V$
	0.001				Digital inputs = 0 V or 3.3 V
DD	0.001			μA typ	
	1.0			µA max	

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to GND	–0.3 V to +7 V
Analog, Digital Inputs ¹	-0.3 V to V _{DD} + 0.3 V or
	30 mA, whichever occurs first
Peak Current, S or D	100 mA
	(Pulsed at 1 ms, 10% duty cycle max)
Continuous Current, S or D	30 mA
Operating Temperature Range	-40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
MSOP Package, Power Dissipation	315 mW
θ_{JA} Thermal Impedance	206°C/W
θ_{JC} Thermal Impedance	44°C/W
SOT-23 Package, Power Dissipation	282 mW
θ_{JA} Thermal Impedance	229.6°C/W
θ _{JC} Thermal Impedance	91.99°C/W
Lead Soldering	
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature (<20 sec)	220°C
Soldering (Pb-Free)	
Reflow, Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	20 sec to 40 sec
ESD	1 kV

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

¹ Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

08708-002

IN 1		6 S2
V _{DD} 2	ADG719 TOP VIEW (Not to Scale)	5 D
GND 3		4 S1

Figure 2. 6-Lead SOT-23

Figure 3. 8-Lead MSOP

Table 4. Pin description

Pin N	lumber		
MSOP	SOT-23	Mnemonic	Description
1	5	D	Drain Terminal. Can be used as an input or output.
2	4	S1	Source Terminal. Can be used as an input or output.
3	3	GND	Ground (0 V) Reference Pin.
4	2	VDD	Most Positive Power Supply Pin.
5	-	NC	Not Internally Connected.
6	1	IN	Digital Switch Control Pin.
7	-	NC	Not Internally Connected.
8	6	S2	Source Terminal. Can be used as an input or output.

Table 5. Truth Table

ADG719 IN	Switch S1	Switch S2
0	ON	OFF
_ 1	OFF	ON

TYPICAL PERFORMANCE CHARACTERISTICS

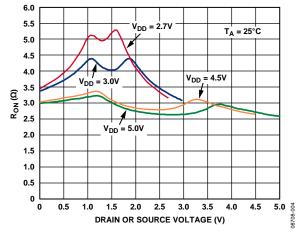


Figure 4. On Resistance vs. V_D (V_s), Single Supplies

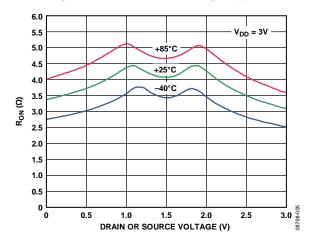


Figure 5. On Resistance vs. V_D (V_s) for Different Temperatures, $V_{DD} = 3 V$

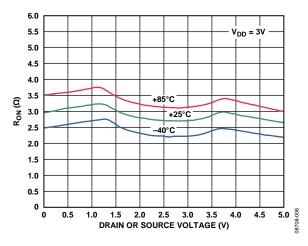


Figure 6. On Resistance vs. V_D (V_s) for Different Temperatures, $V_{DD} = 5 V$

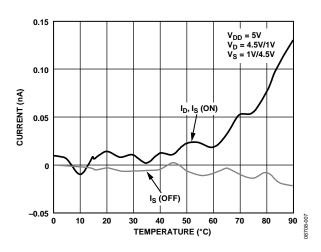
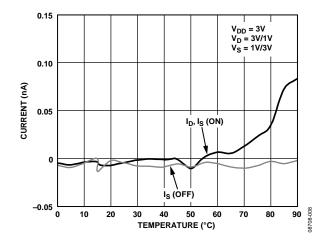



Figure 7. Leakage Currents vs. Temperature

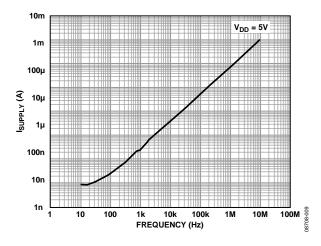


Figure 9. Supply Current vs. Input Switching Frequency

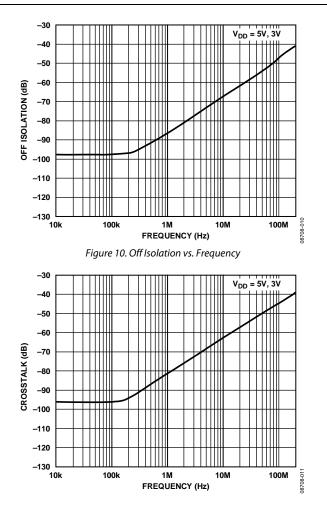


Figure 11. Crosstalk vs. Frequency

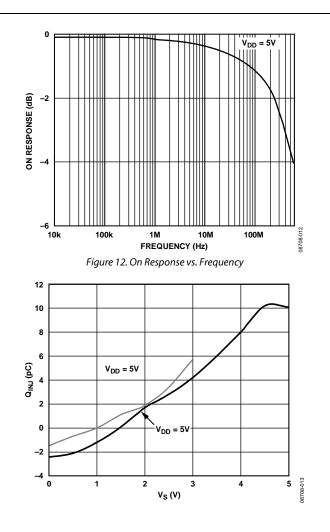


Figure 13. Charge Injection vs. Source Voltage

TEST CIRCUITS I_D (OFF) I_S (OFF) I_D (ON) s oo D D s (A)~` ``` (A) (A) vs≞ vs ≟ ∀ VD 016 VD V1 s D σ ٧s 38708-01. R_{ON} = V1/I_{DS} Figure 15. Off Leakage Figure 16. On Leakage Figure 14. On Resistance 0.1µF VIN 50% 50% £ V_{DD} 90% 90% D s 300Ω V ⊥ c_L ⊤ 35pF ▽ o', o Vout ο ν_{ουτ} IN Φ GND 08-017 t_{off} 4 Figure 17. Switching Times v_{DD} Y 0.1µF ٦ŀ Æ V_{IN} 50% 50% V_{DD} oν **S**1 V_{S1} 7 D D2 R_{L2} 300Ω o v_{out} 50% 509 S2 2 V_{OUT} V_{S2} IN ٥V GND 08708-018

Figure 18. Break-Before-Make Time Delay, t_D

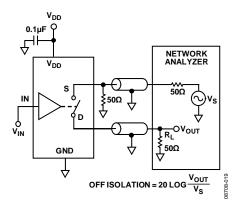


Figure 19. Off Isolation

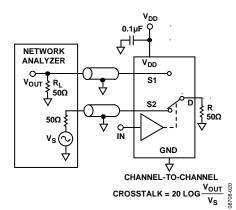


Figure 20. Channel-to-Channel Crosstalk

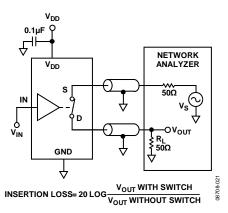


Figure 21. Bandwidth

TERMINOLOGY

Ron

Ohmic Resistance between D and S.

ΔR_{ON}

On Resistance Match between Any Two Channels that is, R_{ON} max – R_{ON} min.

R_{FLAT}(ON)

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

Is (Off) Source Leakage Current with the Switch Off.

I_D, **I**_S **(On)** Channel Leakage Current with the Switch On.

 $\mathbf{V}_{D}\left(\mathbf{V}s\right)$ Analog Voltage on Terminals D and S.

C_s (Off) Off Switch Source Capacitance.

С_D, **С**_s (**On**) On Switch Capacitance.

ton

Delay between Applying the Digital Control Input and the Output Switching On.

toff

Delay between Applying the Digital Control Input and the Output Switching Off.

t_D

Off Time or On Time Measured between the 90% Points of Both Switches, when Switching From One Address State to Another.

Crosstalk

A Measure of Unwanted Signal That Is Coupled through from One Channel to Another as a Result of Parasitic Capacitance.

Off Isolation A Measure of Unwanted Signal Coupling through an Off Switch.

Bandwidth The Frequency at Which the Output is Attenuated by –3 dBs.

On Response The Frequency Response of the On Switch.

Insertion Loss Loss due to On Resistance of Switch.

APPLICATIONS INFORMATION

The ADG719 belongs to Analog Devices' new family of CMOS switches. This series of general-purpose switches has improved switching times, lower on resistance, higher bandwidths, low power consumption, and low leakage currents.

ADG719 SUPPLY VOLTAGES

Functionality of the ADG719 extends from 1.8 V to 5.5 V single supply, which makes it ideal for battery-powered instruments where power efficiency and performance are important design parameters.

It is important to note that the supply voltage effects the input signal range, the on resistance, and the switching times of the part. By taking a look at the Typical Performance Characteristics and the Specifications, the effects of the power supplies can be clearly seen.

For V_{DD} = 1.8 V operation, R_{ON} is typically 40 Ω over the temperature range.

ON RESPONSE VS. FREQUENCY

Figure 22 illustrates the parasitic components that affect the ac performance of CMOS switches (the switch is shown surrounded by a box). Additional external capacitances will further degrade some performance. These capacitances affect feedthrough, crosstalk, and system bandwidth.

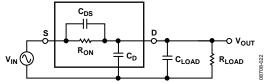


Figure 22. Switch Represented by Equivalent Parasitic Components

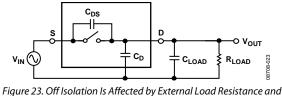
The transfer function that describes the equivalent diagram of the switch (Figure 22) is of the form A(s) shown below:

$$A(s) = R_T \left[\frac{s(R_{ON} \ C_{DS}) + 1}{s(R_T \ R_{ON} \ C_T) + 1} \right]$$

where:

 $R_{\rm T} = R_{\rm LOAD} / (R_{\rm LOAD} + R_{\rm ON})$

 $C_{\rm T} = C_{\rm LOAD} + C_{\rm D} + C_{\rm DS}$

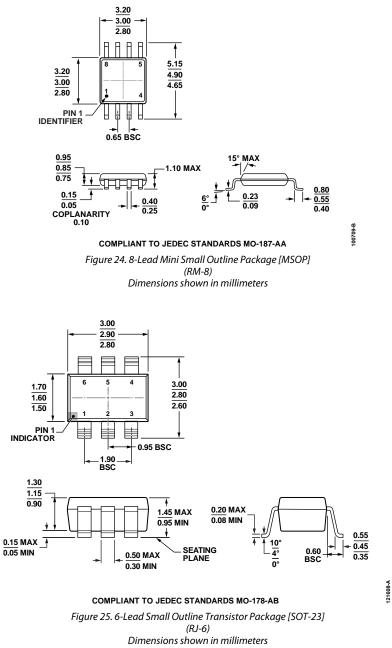

The signal transfer characteristic is dependent on the switch channel capacitance, C_{DS} . This capacitance creates a frequency zero in the numerator of the transfer function A(s). Because the

switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with C_{DS} and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of A(s).

The dominant effect of the output capacitance, C_D , causes the pole breakpoint frequency to occur first. Therefore, in order to maximize bandwidth, a switch must have a low input and output capacitance and low on resistance. The On Response vs. Frequency plot for the ADG719 can be seen in Figure 12.

OFF ISOLATION

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, C_{DS} , couples the input signal to the output load when the switch is off, as shown in Figure 23.



igure 23. Off Isolation Is Affected by External Load Resistance and Capacitance

The larger the value of C_{DS} , the larger the values of feedthrough that will be produced. Figure 10 illustrates the drop in off isolation as a function of frequency. From dc to roughly 200 kHz, the switch shows better than -95 dB isolation. Up to frequencies of 10 MHz, the off isolation remains better than -67 dB. As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest C_{DS} possible. The values of load resistance and capacitance also affect off isolation, since they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$A(s) = \left[\frac{s(R_{LOAD} C_{DS})}{s(R_{LOAD})(C_{LOAD} + C_{D} + C_{DS}) + 1}\right]$$

OUTLINE DIMENSIONS

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADG719BRM	-40°C to +125°C	8-Lead MSOP	RM-8	S5B
ADG719BRM-REEL	–40°C to +125°C	8-Lead MSOP	RM-8	S5B
ADG719BRM-REEL7	-40°C to +125°C	8-Lead MSOP	RM-8	S5B
ADG719BRMZ	-40°C to +125°C	8-Lead MSOP	RM-8	S5B#
ADG719BRMZ-REEL	-40°C to +125°C	8-Lead MSOP	RM-8	S5B#
ADG719BRMZ-REEL7	-40°C to +125°C	8-Lead MSOP	RM-8	S5B#
ADG719BRT-REEL	-40°C to +125°C	6-Lead SOT-23	RJ-6	S5B
ADG719BRT-REEL7	-40°C to +125°C	6-Lead SOT-23	RJ-6	S5B
ADG719BRT -500RL7	-40°C to +125°C	6-Lead SOT-23	RJ-6	S5B
ADG719BRTZ -500RL7	-40°C to +125°C	6-Lead SOT-23	RJ-6	S5B#
ADG719BRTZ-R2	–40°C to +125°C	6-Lead SOT-23	RJ-6	S5B#
ADG719BRTZ-REEL	-40°C to +125°C	6-Lead SOT-23	RJ-6	S5B#
ADG719BRTZ-REEL7	-40°C to +125°C	6-Lead SOT-23	RJ-6	S5B#

 1 Z = RoHS Compliant Part.

NOTES

NOTES

©2002–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08708-0-3/10(D)

www.analog.com