
Connection Diagrams

Pin Assignment for SSOP and TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description		
OE _n	Output Enable Input (Active LOW)		
T/R _n	Transmit/Receive Input		
A ₀ -A ₁₅	Side A Inputs/3-STATE Outputs		
B ₀ -B ₁₅	Side B Inputs/3-STATE Outputs		
NC	No Connect		

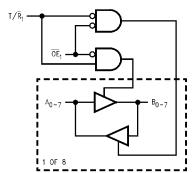
FBGA Pin Assignments

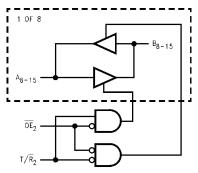
	1	2	3	4	5	6
Α	B ₀	NC	T/R ₁	OE ₁	NC	A ₀
В	B ₂	B ₁	NC	NC	A ₁	A ₂
С	B ₄	B ₃	V _{CC}	V _{CC}	A ₃	A ₄
D	B ₆	B ₅	GND	GND	A ₅	A ₆
E	B ₈	B ₇	GND	GND	A ₇	A ₈
F	B ₁₀	B ₉	GND	GND	A ₉	A ₁₀
G	B ₁₂	B ₁₁	V _{CC}	V _{CC}	A ₁₁	A ₁₂
Н	B ₁₄	B ₁₃	NC	NC	A ₁₃	A ₁₄
J	B ₁₅	NC	T/R ₂	OE ₂	NC	A ₁₅

Truth Tables

	Inp	uts	Outroots.
	OE ₁	T/R ₁	Outputs
	L L		Bus B ₀ -B ₇ Data to Bus A ₀ -A ₇
	L H		Bus A ₀ -A ₇ Data to Bus B ₀ -B ₇
			HIGH–Z State on A ₀ –A ₇ ,B ₀ –B ₇

Inputs		2.1.1.	
OE ₂	T/R ₂	Outputs	
L	L	Bus B ₈ -B ₁₅ Data to Bus A ₈ -A ₁₅	
L	Н	Bus A ₈ -A ₁₅ Data to Bus B ₈ -B ₁₅	
H X		HIGH–Z State on A ₈ –A ₁₅ ,B ₈ –B ₁₅	


H = HIGH Voltage Level


- L = LOW Voltage Level X = Immaterial
- Z = High Impedance

Functional Description

The LVT16245 and LVTH16245 contain sixteen non-inverting bidirectional buffers with 3-STATE outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation.

Logic Diagrams

Note: Please note that these diagrams are provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 4)	_ v
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
Io	DC Output Current	64	Output at HIGH State, V _O > V _{CC}	mA
		128	Output at LOW State, V _O > V _{CC}	IIIA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C

Recommended Operating Conditions

Symbol Parameter		Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH-Level Output Current		-32	mA
I _{OL}	LOW-Level Output Current		64	mA
T _A	Free-Air Operating Temperature	-40	+85	°C
Δt/ΔV	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 3: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 4: Io Absolute Maximum Ratings must be observed.

DC Electrical Characteristics

Parameter		V _{CC} T _A = -40°C to		to +85°C		Conditions	
raiamete		(V)	Min	Max	Units	Conditions	
Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA	
Input HIGH Voltage		2.7-3.6	2.0		V	$V_O \le 0.1V$ or	
Input LOW Voltage		2.7-3.6		0.8	V	$V_O \ge V_{CC} - 0.1V$	
Output HIGH Voltage		2.7-3.6	V _{CC} - 0.2			I _{OH} = -100 μA	
		2.7	2.4		V	I _{OH} = -8 mA	
		3.0	2.0			I _{OH} = -32 mA	
Output LOW Voltage		2.7		0.2		I _{OL} = 100 μA	
Output LOW Voltage		2.7		0.5		I _{OL} = 24 mA	
		3.0		0.4	V	I _{OL} = 16 mA	
		3.0		0.5		I _{OL} = 32 mA	
		3.0		0.55		I _{OL} = 64 mA	
Bushold Input Minimum Drive		2.0	75		μА	V _I = 0.8V	
		3.0	-75			V _I = 2.0V	
Bushold Input Over-Drive		2.0	500		^	(Note 6)	
Current to Change State		3.0	-500		μА	(Note 7)	
Input Current		3.6		10		V _I = 5.5V	
	Control Pins	3.6		±1		V _I = 0V or V _{CC}	
	Doto Dino	2.6		-5	μA	$V_I = 0V$	
	Data Filis	3.0		1		$V_I = V_{CC}$	
Power Off Leakage Current		0		±100	μА	$0V \le V_I \text{ or } V_O \le 5.5V$	
Power Up/Down 3-STATE		0.15		±100		V _O = 0.5V to 3.0V	
Output Current		0-1.5		±100	μΑ	$V_I = GND \text{ or } V_{CC}$	
3-STATE Output Leakage Co	urrent	3.6		-5	μА	V _O = 0.5V	
3-STATE Output Leakage Co	urrent	3.6		-5	μА	V _O = 0.0V	
	Input Clamp Diode Voltage Input HIGH Voltage Input LOW Voltage Output HIGH Voltage Output HIGH Voltage Output LOW Voltage Bushold Input Minimum Drivi Bushold Input Over-Drive Current to Change State Input Current Power Off Leakage Current Power Up/Down 3-STATE Output Current 3-STATE Output Leakage Current	Input HIGH Voltage Input LOW Voltage Output HIGH Voltage Output HIGH Voltage Output LOW Voltage Bushold Input Minimum Drive Bushold Input Over-Drive Current to Change State Input Current Control Pins Data Pins Power Off Leakage Current Power Up/Down 3-STATE	Input Clamp Diode Voltage 2.7 Input HIGH Voltage 2.7-3.6 Input LOW Voltage 2.7-3.6 Output HIGH Voltage 2.7-3.6 2.7 3.0 Output LOW Voltage 2.7 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0 Control Pins 3.6 Data Pins 3.6 Power Off Leakage Current 0 Power Up/Down 3-STATE 0-1.5 Output Current 3.6 O	Parameter	Parameter	Parameter	

DC Electrical Characteristics (Continued)

Symbol	Parameter	v _{cc}	T _A = -40°	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Conditions	
Cynnbon	T arameter	(V)	Min	Max	Units	Conditions	
l _{OZH}	3-STATE Output Leakage Current	3.6		5	μΑ	V _O = 3.0V	
I _{OZH} (Note 5)	3-STATE Output Leakage Current	3.6		5	μА	V _O = 3.6V	
I _{OZH} +	3-STATE Output Leakage Current	3.6		10	μΑ	$V_{CC} < V_O \le 5.5V$	
I _{CCH}	Power Supply Current	3.6		0.19	mA	Outputs HIGH	
I _{CCL}	Power Supply Current	3.6		5.0	mA	Outputs LOW	
I _{CCZ}	Power Supply Current	3.6		0.19	mA	Outputs Disabled	
I _{CCZ+}	Power Supply Current	3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V$, Outputs Disabled	
ΔI_{CC}	Increase in Power Supply Current	3.6		0.2	mA	One Input at V _{CC} – 0.6V	
(Note 8)						Other Inputs at V _{CC} or GND	

Note 5: Applies to bushold versions only (74LVTH16245).

Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.

Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.

Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 9)

Symbol	Parameter	v _{cc}	T _A = 25°C		T _A = 25°C Units		Conditions
Symbol	Falametei	(V)	Min	Тур	Max	Offics	$C_L = 50$ pF, $R_L = 500\Omega$
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3		0.8		V	(Note 10)
V _{OLV}	Quiet Output Minimum Dynamic VOL	3.3		-0.8		V	(Note 10)

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 10: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

AC Electrical Characteristics

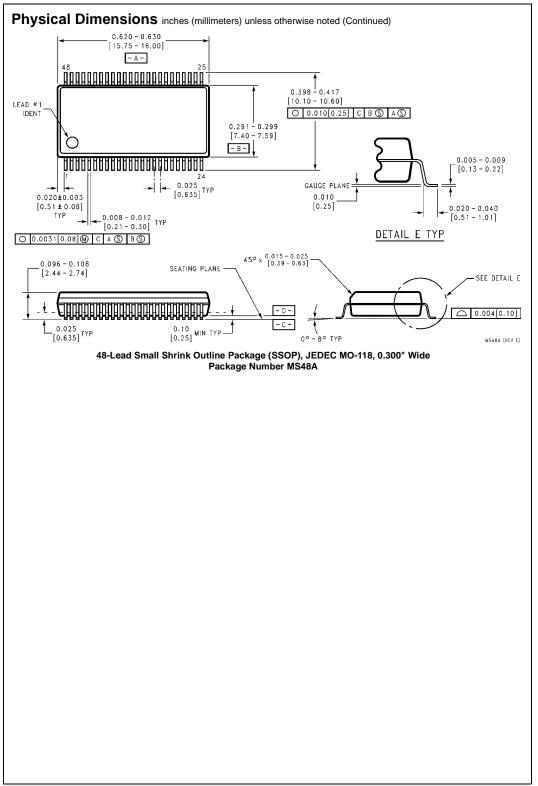
Symbol	Parameter		Units				
Symbol		V _{CC} = 3.	3V ± 0.3V	V _{CC} =	Units		
		Min	Max	Min	Max		
t _{PLH}	Propagation Delay Data to Output	1.5	3.5	1.5	3.9	no	
t _{PHL}		1.3	3.5	1.3	3.9	ns	
t _{PZH}	Output Enable Time	1.5	4.5	1.5	5.3	ns	
t _{PZL}		1.6	5.3	1.6	6.9	115	
t _{PHZ}	Output Disable Time	2.3	5.4	2.3	6.1	ns	
t _{PLZ}		2.2	5.1	2.2	5.4	113	
toshl	Output to Output Skew		1.0		1.0	ns	
toslh	(Note 11)		1.0		1.0	110	

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design.

Capacitance (Note 12)

Symbol Parameter		Parameter	Conditions	Typical	Units
1	C _{IN}	Input Capacitance	$V_{CC} = 0V$, $V_I = 0V$ or V_{CC}	4	pF
	C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF

 $\textbf{Note 12:} \ \, \textbf{Capacitance is measured at frequency } f = 1 \ \, \textbf{MHz}, per \ \, \textbf{MIL-STD-883}, \, \textbf{Method 3012}.$


74LVT16245 • 74LVTH16245 Physical Dimensions inches (millimeters) unless otherwise noted ○ 0.10 B В 5.5 8.0 Α (0.8)0.4 0.10 A -(0.75) 000000 ABCDEFGHJ PIN ONE 8 0.8 1/23^j456 Top **Bottom** 54X 0.5^{+0.05} View View 0.15(M) C A B 0.08(M) C // 0.15 C SEATING PLANE 0.45 0.35 1.4MAX ○ 0.10 C

NOTES:

- A. THIS PACKAGE CONFORMS TO JEDEC M0-205
- **B. ALL DIMENSIONS IN MILLIMETERS**
- C. LAND PATTERN RECOMMENDATION: NSMD (Non Solder Mask Defined)
 .35MM DIA PADS WITH A SOLDERMASK OPENING OF .45MM CONCENTRIC TO PADS
 D. DRAWING CONFORMS TO ASME Y14.5M-1994

BGA54ArevD

54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide Package Number BGA54A Preliminary

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 12.50±0.10 0.40 TYP -B-99. 9.20 8.10 50. O.2 C B A ALL LEAD TIPS PIN #1 IDENT 0.50 LAND PATTERN RECOMMENDATION 0.1 C SEE DETAIL A 0.90+0.15 ALL LEAD TIPS 0.09-0.20 0.10±0.05 0.17-0.27 0.50 ♦ 0.13@ A BS CS 12.00' TOP & BOTTOM DIMENSIONS ARE IN MILLIMETERS R0.16 GAGE PLANE 0.25 NOTES: A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ED, DATE 4/97. B. DIMENSIONS ARE IN MILLIMETERS. SEATING PLANE 0.60±0.10 1.00 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. DETAIL A MTD48REVC

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com