Contents VND5E025AY-E

Contents

1	Bloc	k diagram and pin description5
2	Elec	trical specifications 7
	2.1	Absolute maximum ratings
	2.2	Thermal data 8
	2.3	Electrical characteristics
	2.4	Waveforms
	2.5	Electrical characteristics curves
3	Арр	lication information
	3.1	Load dump protection
	3.2	MCU I/Os protection
	3.3	Current sense and diagnostic
		3.3.1 Short to V _{CC} and off-state open-load detection
	3.4	Maximum demagnetization energy (V _{CC} = 13.5 V)
4	Pacl	kage and PCB thermal data
	4.1	PowerSSO-36 thermal data
5	Pacl	kage information
	5.1	ECOPACK® · · · · · · · 32
	5.2	PowerSSO-36 mechanical data
	5.3	Packing information
6	Devi	ce summary 35
7	Revi	sion history

VND5E025AY-E List of tables

List of tables

Table 1.	Pin function	. 5
Table 2.	Suggested connections for unused and not connected pins	. 6
Table 3.	Absolute maximum ratings	. 7
Table 4.	Thermal data	. 8
Table 5.	Power section	. 9
Table 6.	Switching (V _{CC} = 13 V; T _i = 25 °C)	. 9
Table 7.	Current sense (8 V < V _{CC} < 18 V)	
Table 8.	Open-load detection (8 V < V _{CC} < 18 V)	11
Table 9.	Protections and diagnostics	11
Table 10.	Logic inputs	12
Table 11.	Truth table	16
Table 12.	Electrical transient requirements (part 1)	17
Table 13.	Electrical transient requirements (part 2)	17
Table 14.	Electrical transient requirements (part 3)	17
Table 15.	Thermal parameters	31
Table 16.	PowerSSO-36 mechanical data	33
Table 17.	Device summary	35
Table 18	Document revision history	36

List of figures VND5E025AY-E

List of figures

Figure 1.	Block diagram	5
Figure 2.	Configuration diagram (top view)	6
Figure 3.	Current and voltage conventions	7
Figure 4.	Current sense delay characteristics	13
Figure 5.	Open-load off-state delay timing	13
Figure 6.	Switching characteristics	13
Figure 7.	Delay response time between rising edge of output current and rising edge of current se	ense
(CS enabled		
Figure 8.	Output voltage drop limitation	14
Figure 9.	I _{OLIT} /I _{SENSE} vs I _{OLIT}	15
Figure 10.	Maximum current sense ratio drift vs load current	15
Figure 11.	Normal operation	18
Figure 12.	Overload or short to GND	
Figure 13.	Intermittent overload	19
Figure 14.	Short to V _{CC}	19
Figure 15.	T _{.l} evolution in overload or short to GND	
Figure 16.	Off-state output current	
Figure 17.	High-level input current	
Figure 18.	Input clamp voltage	21
Figure 19.	High-level input voltage	
Figure 20.	Low-level input voltage	
Figure 21.	Input hysteresis voltage	
Figure 22.	On-state resistance vs T _{case}	
Figure 23.	On-state resistance vs V _{CC} .	22
Figure 24.	Undervoltage shutdown	22
Figure 25.	I _{LIMH} vs T _{case}	
Figure 26.	Turn-on voltage slope	22
Figure 27.	Turn-off voltage slope	
Figure 28.	CS_DIS clamp voltage	
Figure 29.	Low-level CS_DIS voltage	
Figure 30.	High-level CS_DIS voltage	23
Figure 31.	Application schematic	
Figure 32.	Current sense and diagnostic	26
Figure 33.	Maximum turn off current versus inductance	
Figure 34.	PowerSSO-36 PC board	29
Figure 35.	R _{thi-amb} vs PCB copper area in open box free air condition (one channel on)	30
Figure 36.	PowerSSO-36 thermal impedance junction ambient single pulse (one channel on)	
Figure 37.	Thermal fitting model of a double-channel HSD in PowerSSO-36	
Figure 38.	PowerSSO-36 package dimensions	
Figure 39.	PowerSSO-36 tube shipment (no suffix)	
Figure 40.	PowerSSO-36 tape and reel shipment (suffix "TR")	

Block diagram and pin description

Figure 1. **Block diagram**

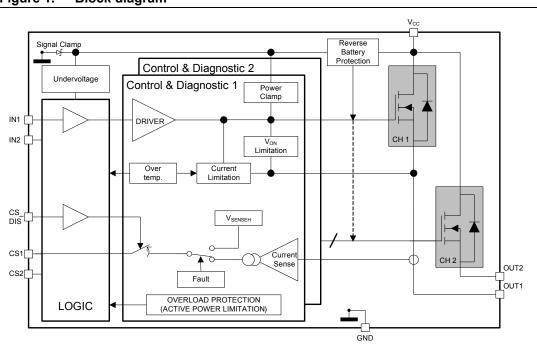


Table 1. Pin function

Name	Function
V _{CC}	Battery connection
OUT _{1,2}	Power output
GND	Ground connection
IN _{1,2}	Voltage controlled input pins with hysteresis, CMOS compatible. They controls output switch state
CS _{1,2}	Analog current sense pins, they deliver a current proportional to the load current
CS_DIS	Active high CMOS compatible pin, to disable the current sense pin

N.C. - 1 ☐ 36 - N.C. N.C. - 2 ☐ 35 - N.C. OUT1 - 3 ☐ 34 - OUT2 1 OUT1 - 4 ☐ 33 - OUT2 OUT1 - 5 ☐ 32 - OUT2 OUT1 - 6 31 - OUT2 OUT1 - 7 30 - OUT2 OUT1 - 8 🗀 ☐ 29 - OUT2 OUT1 - 9 ☐ 28 - OUT2 N.C. - 10 ☐ 27 - N.C. N.C. - 11 ☐ 26 - N.C. N.C. - 12 □ 25 - N.C. IN1 - 13 🗖 24 - IN2 N.C. - 14 🗀 ☐ 23 - N.C. CS1 - 15 🗀 ☐ 22 - CS2 N.C. - 16 ☐ 21 - N.C. N.C. - 17 20 - N.C. GND - 18 □ ☐ 19 - CS_DIS TAB = V_{CC} GAPGCFT00834

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection / pin	Current sense	N.C.	Output	Input	CS_DIS
Floating	Not allowed	X ⁽¹⁾	Х	Х	Х
To ground	Through 1 KΩ resistor	Х	Not allowed	Through 10 KΩ resistor	Through 10 KΩ resistor

1. X: do not care.

2 Electrical specifications

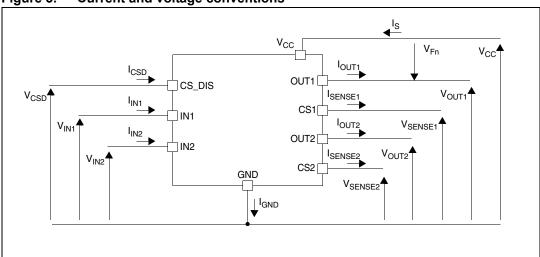


Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stressing the device above the rating listed in the *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage	41	V
-V _{CC}	Reverse DC supply voltage	16	٧
V _{CC_LSC}	Maximum supply voltage for full protection to short-circuit (AEC-Q100-012)	18	V
I _{OUT}	DC output current	Internally limited	Α
-l _{OUT}	Reverse DC output current	35	Α
I _{IN}	DC input current	-1 to 10	mA
I _{CSD}	DC current sense disable input current	-1 to 10	mA
V _{CSENSE}	Current sense maximum voltage	V _{CC} - 41 +V _{CC}	V V
E _{MAX}	Maximum switching energy (single pulse) $ (L=0.26 \text{ mH}; \text{R}_{\text{L}}=0 \ \Omega; \text{V}_{\text{BAT}}=13.5 \text{ V}; \text{T}_{\text{jstart}}=150^{\circ}\text{C}; \\ \text{I}_{\text{OUT}}=\text{I}_{\text{limL}}(\textit{Typ.})) $	29	mJ

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
	Electrostatic discharge (human body model: $R = 1.5 \text{ K}\Omega$; $C = 100 \text{ pF}$)		
V _{ESD}	- IN - CS - CS_DIS	4000 2000 4000	V
	- OUT - V _{CC}	5000 5000	
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
T _j	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	°C

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Maximum value	Unit
R _{thj-case}	Thermal resistance junction-case (with one channel on)	1.4	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (MAX)	See <i>Figure 35</i> in the thermal section	°C/W

2.3 Electrical characteristics

Values specified in this section are for 8 V < V_{CC} < 28 V; -40°C < T_j < 150°C, unless otherwise specified.

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{CC}	Operating supply voltage		4.5	13	28	V
V _{USD}	Undervoltage shutdown			3.5	4.5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.5		V
		I _{OUT} = 3 A; T _j = 25°C		25		
R _{ON}	ON-state resistance	I _{OUT} = 3 A; T _j = 150°C			50	mΩ
		I _{OUT} = 3 A; V _{CC} = 5 V; T _j = 25°C		35		
R _{ON REV}	Reverse battery ON-state resistance	$V_{CC} = -13 \text{ V; } I_{OUT} = -3 \text{ A;}$ $T_j = 25^{\circ}\text{C}$		25		mΩ
V _{clamp}	Clamp voltage	I _S = 20 mA	41	46	52	V
I _S	Supply current	Off-state: $V_{CC} = 13 \text{ V;} T_j = 25^{\circ}\text{C;}$ $V_{IN} = V_{OUT} = V_{SENSE} = V_{CSD} = 0 \text{ V}$		2 ⁽¹⁾	5 ⁽¹⁾	μΑ
'S	опрыу синен	On-state: $V_{CC} = 13 \text{ V}$; $V_{IN} = 5 \text{ V}$; $I_{OUT} = 0 \text{ A}$		3.5	6.5	mA
	OFF-state	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25^{\circ}\text{C}$	0	0.01	3	
I _{L(off)}	output current (2)	$V_{IN} = V_{OUT} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 125^{\circ}\text{C}$	0		5	μΑ

^{1.} PowerMOS leakage included.

Table 6. Switching ($V_{CC} = 13 \text{ V}; T_j = 25 ^{\circ}\text{C}$)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$R_L = 4.3 \Omega \text{ (see Figure 6)}$	_	20	_	μs
t _{d(off)}	Turn-off delay time	$R_L = 4.3 \Omega \text{ (see Figure 6)}$	_	20	_	μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope	$R_L = 4.3 \Omega$		See Figure 26		V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope	$R_L = 4.3 \Omega$	_	See Figure 27		V/µs
W _{ON}	Switching energy losses during t _{won}	$R_L = 4.3 \Omega$ (see <i>Figure 6</i>)		0.25		mJ
W _{OFF}	Switching energy losses during t _{woff}	$R_L = 4.3 \Omega$ (see <i>Figure 6</i>)	_	0.3		mJ

^{2.} For each channel.

Table 7. Current sense (8 V < V_{CC} < 18 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Κ ₀	I _{OUT} /I _{SENSE}	$I_{OUT} = 0.5 \text{ A}; V_{SENSE} = 0.5 \text{ V}$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	1000	2900	5000	
K ₁	lout/Isense	$I_{OUT} = 2 \text{ A}; V_{SENSE} = 0.5 \text{ V}$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$ $T_j = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	1900 2240	3000 3000	3810 3520	
dK ₁ /K ₁ ⁽¹⁾	Current sense ratio drift	$I_{OUT} = 2 \text{ A}; V_{SENSE} = 0.5 \text{ V};$ $V_{CSD} = 0 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-9		9	%
K ₂	lout/Isense	$I_{OUT} = 3 \text{ A}; V_{SENSE} = 4 \text{ V}$ $T_j = -40 \text{ °C to } 150 \text{ °C}$ $T_j = 25 \text{ °C to } 150 \text{ °C}$	2230 2460		3550 3350	
$dK_2/K_2^{(1)}$	Current sense ratio drift	$I_{OUT} = 3 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{CSD} = 0 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-6		6	%
К ₃	lout/Isense	$I_{OUT} = 10 \text{ A}; V_{SENSE} = 4 \text{ V}$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$ $T_j = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	2710 2780	2900 2900	3150 3080	
$dK_3/K_3^{(1)}$	Current sense ratio drift	$I_{OUT} = 10 \text{ A}; V_{SENSE} = 4 \text{ V};$ $V_{CSD} = 0 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	-3		3	%
		$I_{OUT} = 0 \text{ A}; V_{SENSE} = 0 \text{ V};$ $V_{CSD} = 5 \text{ V}; V_{IN} = 0 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	0		1	
I _{SENSE0}	Analog sense leakage current	$I_{OUT} = 0 \text{ A}; V_{SENSE} = 0 \text{ V};$ $V_{CSD} = 0 \text{ V}; V_{IN} = 5 \text{ V};$ $T_j = -40^{\circ}\text{C to } 150^{\circ}\text{C}$	0		2	μΑ
		$I_{OUT} = 3 \text{ A; } V_{SENSE} = 0 \text{ V;}$ $V_{CSD} = V_{IN} = 5 \text{ V;}$	0		1	
V _{SENSE}	Max analog sense output voltage	I _{OUT} = 15 A; V _{CSD} = 0 V	5			٧
V _{SENSEH}	Analog sense output voltage in fault condition ⁽²⁾	V_{CC} = 13 V; R_{SENSE} = 10 K Ω		8		٧
I _{SENSEH}	Analog sense output current in fault condition ⁽²⁾	V _{CC} = 13 V; V _{SENSE} = 5 V		9		mA
t _{DSENSE1H}	Delay response time from falling edge of CS_DIS pin	V _{SENSE} < 4 V; 0.5 A < I _{OUT} < 10 A; I _{SENSE} = 90% of I _{SENSE max} (see <i>Figure 4</i>)		20	100	μs
t _{DSENSE1L}	Delay response time from rising edge of CS_DIS pin	V _{SENSE} < 4 V; 0.5 A < I _{OUT} < 10 A; I _{SENSE} = 10 % of I _{SENSE max} (see <i>Figure 4</i>)		5	20	μs

Table 7. Current sense (8 V < V_{CC} < 18 V) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
[†] DSENSE2H	Delay response time from rising edge of IN pin	V _{SENSE} < 4 V; 0.5 A < I _{OUT} < 10 A; I _{SENSE} = 90 % of I _{SENSE max} (see <i>Figure 4</i>)		70	300	μs
Δt _{DSENSE2H}	Delay response time between rising edge of output current and rising edge of current sense	V _{SENSE} < 4V; I _{SENSE} = 90 % of I _{SENSEMAX} , I _{OUT} = 90 % of I _{OUTMAX} I _{OUTMAX} = 3 A (see <i>Figure 7</i>)			100	μs
t _{DSENSE2L}	Delay response time from falling edge of IN pin	V _{SENSE} < 4 V; 0.5 A < I _{OUT} < 10 A; I _{SENSE} = 10 % of I _{SENSE max} (see <i>Figure 4</i>)		5	50	μs

^{1.} Parameter guaranteed by design; it is not tested.

Table 8. Open-load detection (8 V < V_{CC} < 18 V)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{OL}	Open-load off-state voltage detection threshold	V _{IN} = 0 V; 8 V < V _{CC} < 18 V	2	_	4	V
I _{OL}	Open-load on-state current detection threshold	V _{IN} = 5 V; 8 V < V _{CC} < 18 V; I _{SENSE} = 5 μA			45	mA
t _{DSTKON}	Output short circuit to V _{cc} detection delay at turn off	See Figure 5	180	_	1200	μs
td_vol	Delay response from output rising edge to V _{SENSE} rising edge in open-load	V _{IN} = 0 V; V _{OUT} = 4 V; V _{SENSE} = 90 % of V _{SENSEH}		_	20	μs
I _{LOFF2}	Off-state output current	V _{OUT} = 4 V	-75		0	μΑ

Table 9. Protections and diagnostics⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	DC short-circuit	V _{CC} = 13 V	33	47	66	Α
'limH	I _{limH} current	5 V < V _{CC} < 18 V			66	
I _{limL}	Short-circuit current during thermal cycling	$V_{CC} = 13 \text{ V}; T_R < T_j < T_{TSD}$		12		Α
T _{TSD}	Shutdown temperature		150	175	200	ů
T _R	Reset temperature		T _{RS} + 1	T _{RS} + 5		°C
T _{RS}	Thermal reset of status		135			°C

Doc ID 17703 Rev 4

11/37

^{2.} Fault condition includes: power limitation, overtemperature and open-load OFF-state detection.

Table 9. Protections and diagnostics⁽¹⁾ (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
T _{HYST}	Thermal hysteresis (T _{TSD} - T _R)			7		°C
V	Turn-off output voltage	I _{OUT} = 2 A; V _{IN} = 0 V; L = 6 mH; T _j = -40°C	V _{CC} - 39	V _{CC} - 46	V _{CC} - 52	V
V _{DEMAG}	clamp	I _{OUT} = 2 A; V _{IN} = 0; L = 6 mH; 25°C < T _{j <} 150°C	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	٧
V _{ON}	Output voltage drop limitation	$I_{OUT} = 0.1 \text{ A};$ $T_j = -40^{\circ}\text{C to}150^{\circ}\text{C}$ (see <i>Figure 8</i>)		25		mV

To ensure long term reliability under heavy overload or short-circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

Table 10. Logic inputs

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V_{IL}	Low-level input voltage				0.9	V
I _{IL}	Low-level input current	V _{IN} = 0.9 V	1			μΑ
V _{IH}	High-level input voltage		2.1			V
I _{IH}	High-level input current	V _{IN} = 2.1 V			10	μΑ
V _{I(hyst)}	Input hysteresis voltage		0.25			V
V	V _{ICL} Input clamp voltage	I _{IN} = 1 mA	5.5		7	V
V ICL		I _{IN} = -1 mA		-0.7		V
V _{CSDL}	Low-level CS_DIS voltage				0.9	V
I _{CSDL}	Low-level CS_DIS current	V _{CSD} = 0.9 V	1			μΑ
V _{CSDH}	High-level CS_DIS voltage		2.1			٧
I _{CSDH}	High-level CS_DIS current	V _{CSD} = 2.1 V			10	μΑ
V _{CSD(hyst)}	CS_DIS hysteresis voltage		0.25			V
V	CS_DIS clamp voltage	I _{CSD} = 1 mA	5.5		7	V
V _{CSCL}	CO_DIO ciamp voltage	I _{CSD} = -1 mA		-0.7		V

Figure 4. Current sense delay characteristics

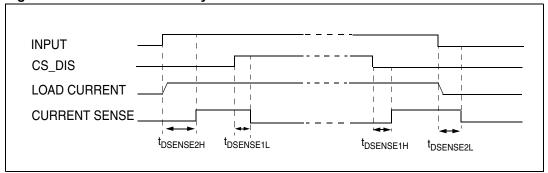


Figure 5. Open-load off-state delay timing

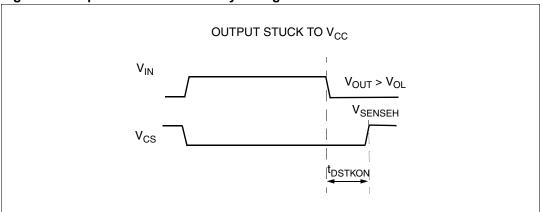
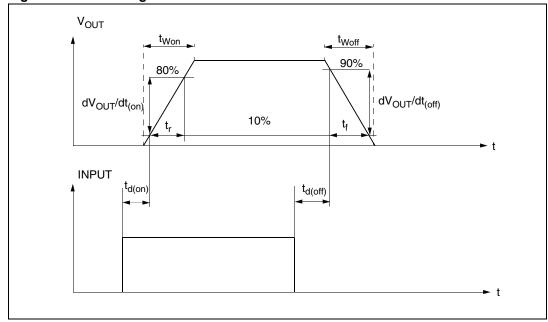
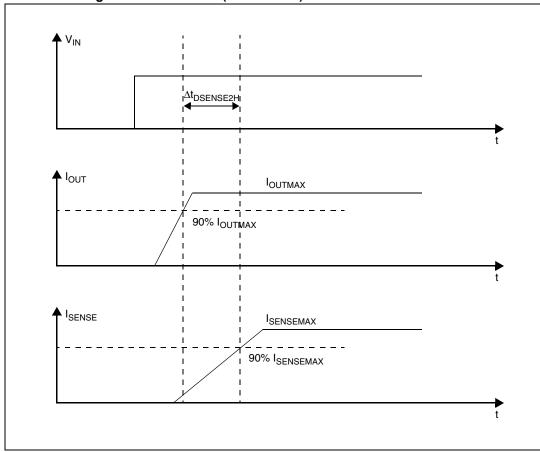
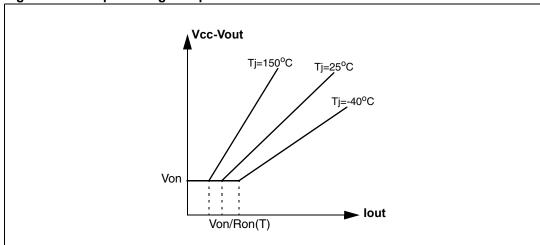
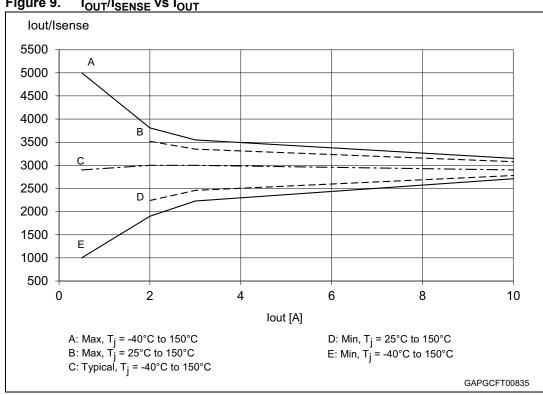
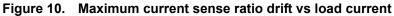
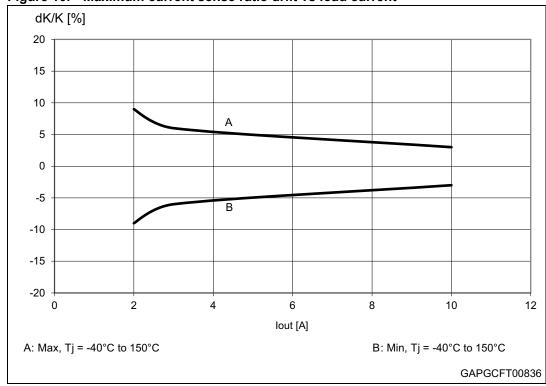



Figure 6. Switching characteristics


Figure 7. Delay response time between rising edge of output current and rising edge of current sense (CS enabled)



I_{OUT}/I_{SENSE} vs I_{OUT} Figure 9.

^{1.} Parameter guaranteed by design; it is not tested.

Doc ID 17703 Rev 4

15/37

Table 11. Truth table

Conditions	Input	Output	Sense (V _{CSD} = 0 V) ⁽¹⁾
Normal operation	L H	L H	0 Nominal
Overtemperature	L H	L L	0 V _{SENSEH}
Undervoltage	L H	L L	0
Overload	н	X (no power limitation) Cycling (power limitation)	Nominal V _{SENSEH}
Short-circuit to GND (Power limitation)	L H	L L	0 V _{SENSEH}
short-circuit to V _{CC} (external pull up disconnected)	L H	H H	V _{SENSEH} < Nominal
Negative output voltage clamp	L	L	0

If the V_{CSD} is high, the SENSE output is at a high impedance, its potential depends on leakage currents and external circuit.

Table 12. Electrical transient requirements (part 1)

ISO 7637-2:	Test levels ⁽¹⁾		Number of	Burst cycle/pulse		Delays and	
2004(E) Test pulse	III	IV	pulses or test times	-	on time	impedance	
1	-75 V	-100 V	5000 pulses	0.5 s	5 s	2 ms, 10 Ω	
2a	+37 V	+50 V	5000 pulses	0.2 s	5 s	50 μs, 2 Ω	
3a	-100 V	-150 V	1 h	90 ms	100 ms	0.1 μs, 50 Ω	
3b	+75 V	+100 V	1 h	90 ms	100 ms	0.1 μs, 50 Ω	
4	-6 V	-7 V	1 pulse			100 ms, 0.01 Ω	
5b ⁽²⁾	+65 V	+87 V	1 pulse			400 ms, 2 Ω	

^{1.} The above test levels must be considered referred to V_{CC} = 13.5V except for pulse 5b

Table 13. Electrical transient requirements (part 2)

ISO 7637-2: 2004(E)	Test level	results ⁽¹⁾
Test pulse	III	IV
1	С	С
2a	С	С
3a	С	С
3b	С	С
4	С	С
5b ⁽²⁾⁽³⁾	С	С

^{1.} The above test levels must be considered referred to V_{CC} = 13.5 V except for pulse 5b

Table 14. Electrical transient requirements (part 3)

Class	Contents
С	All functions of the device are performed as designed after exposure to disturbance.
E	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device.

^{2.} Valid in case of external load dump clamp: 40V maximum referred to ground.

^{2.} Valid in case of external load dump clamp: 40 V maximum referred to ground.

^{3.} Suppressed load dump (pulse 5b) is withstood with a minimum load connected as specified in *Table 3: Absolute maximum ratings*.

2.4 Waveforms

Figure 11. Normal operation

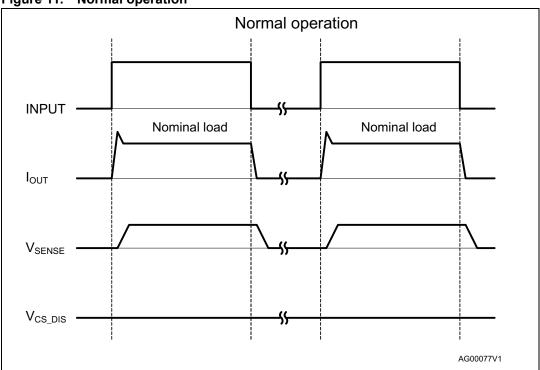
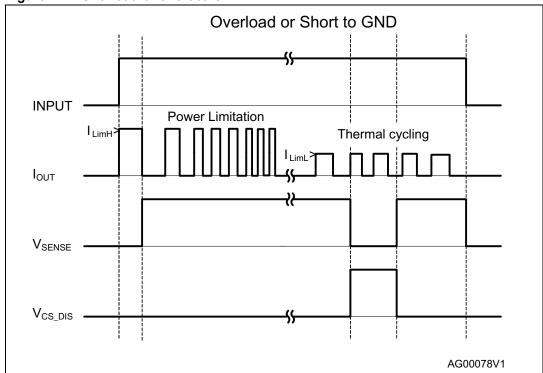



Figure 12. Overload or short to GND

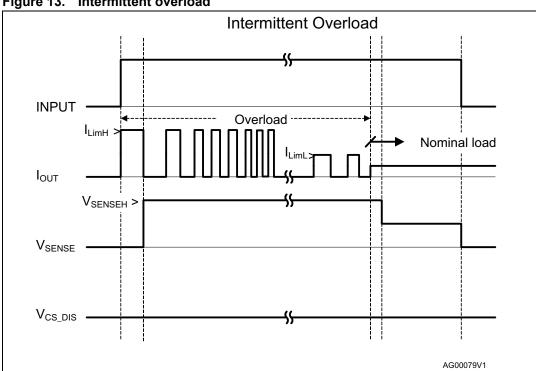
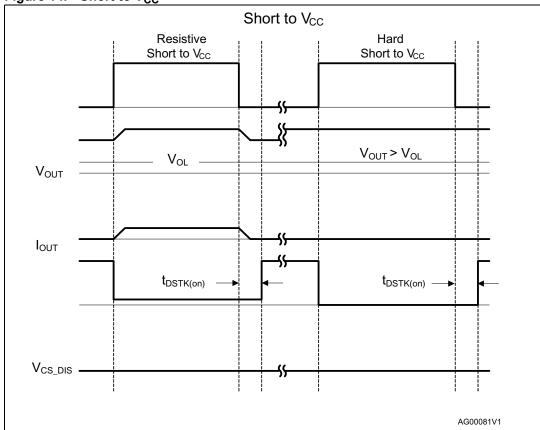



Figure 13. Intermittent overload

Doc ID 17703 Rev 4

19/37

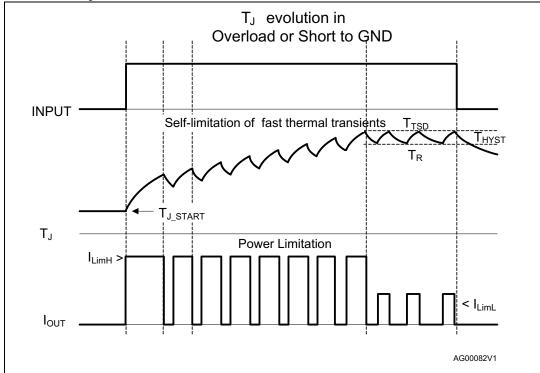


Figure 15. T_J evolution in overload or short to GND

2.5 Electrical characteristics curves

Figure 16. Off-state output current

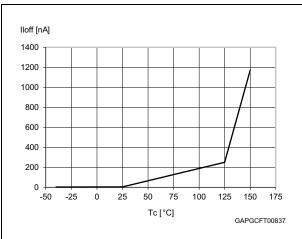


Figure 17. High-level input current

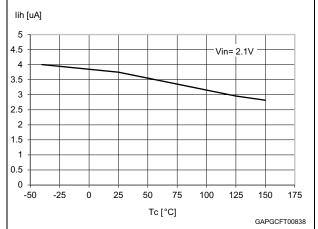
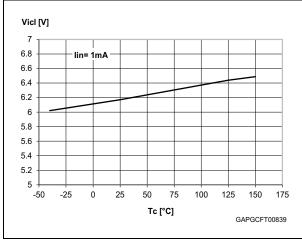



Figure 18. Input clamp voltage

Figure 19. High-level input voltage

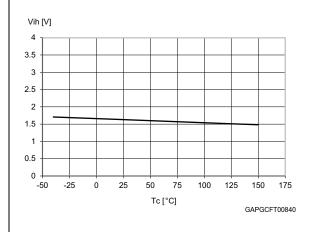
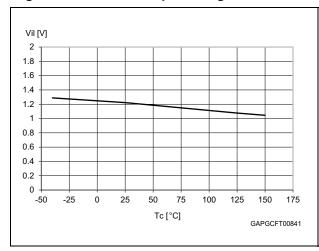
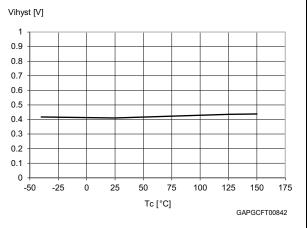
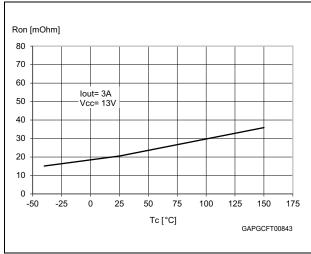




Figure 20. Low-level input voltage

Figure 21. Input hysteresis voltage


577

Doc ID 17703 Rev 4

21/37

Figure 22. On-state resistance vs T_{case}

Figure 23. On-state resistance vs V_{CC}

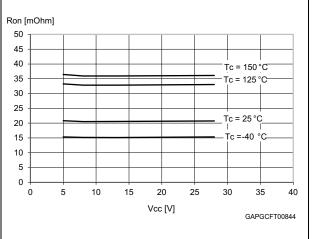
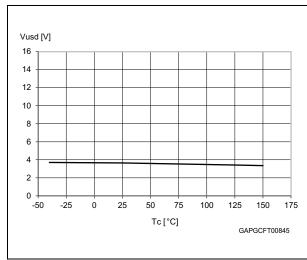



Figure 24. Undervoltage shutdown

Figure 25. I_{LIMH} vs T_{case}

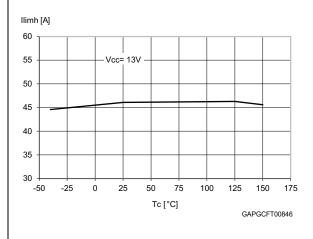
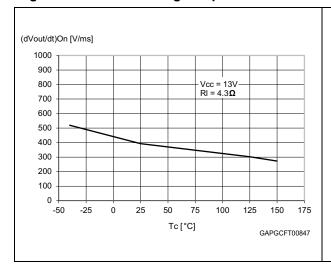



Figure 26. Turn-on voltage slope

Figure 27. Turn-off voltage slope

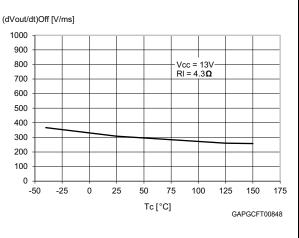
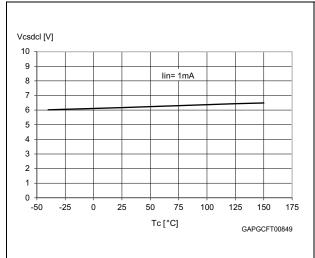



Figure 28. CS_DIS clamp voltage

Figure 29. Low-level CS_DIS voltage

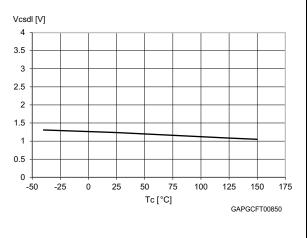
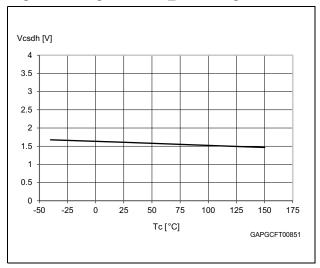



Figure 30. High-level CS_DIS voltage

3 Application information

H5V

Reprot

R

Figure 31. Application schematic

1. Channel 2 has the same internal circuit as channel 1.

3.1 Load dump protection

 D_{ld} is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the V_{CCPK} max rating. The same applies if the device is subject to transients on the V_{CC} line that are greater than the ones shown in the ISO 7637-2: 2004(E) table.

3.2 MCU I/Os protection

When negative transients are present on the V_{CC} line, the control pins are pulled negative to approximately -1.5 V.

ST suggests the insertion of resistors (R_{prot}) in the lines to prevent the microcontroller I/O pins from latching up.

The values of these resistors provide a compromise between the leakage current of the microcontroller, the current required by the HSD I/Os (input levels compatibility) and the latch-up limit of the microcontroller I/Os.

577

Equation 1

$$-V_{CCpeak} / I_{latchup} \le R_{prot} \le (V_{OH\mu C} - V_{IH}) / I_{IHmax}$$

Calculation example:

For
$$V_{CCpeak} = -1.5 \text{ V}$$
; $I_{latchup} \ge 20 \text{ mA}$; $V_{OHuC} \ge 4.5 \text{ V}$

$$75 \Omega \le R_{prot} \le 240 \text{ k}\Omega.$$

Recommended values: $R_{prot} = 10 \text{ k}\Omega$, $C_{EXT} = 10 \text{ nF}$

3.3 Current sense and diagnostic

The current sense pin performs a double function (see *Figure 32: Current sense and diagnostic*):

- Current mirror of the load current in normal operation, delivering a current proportional to the load one according to a known ratio K_X.
 The current I_{SENSE} can be easily converted to a voltage V_{SENSE} by means of an external resistor R_{SENSE}. Linearity between I_{OUT} and V_{SENSE} is ensured up to 5 V minimum (see parameter V_{SENSE} in Table 7: Current sense (8 V < V_{CC} < 18 V)). The current sense accuracy depends on the output current (refer to current sense electrical characteristics Table 7: Current sense (8 V < V_{CC} < 18 V)).</p>
- Diagnostic flag in fault conditions, delivering a fixed voltage V_{SENSEH} up to a maximum current I_{SENSEH} in case of the following fault conditions (refer to Table 11: Truth table):
 - Power limitation activation
 - Over temperature
 - Short to V_{CC} in off-state
 - Open-load in off-state with additional external components.

A logic level high on CS_DIS pin sets at the same time all the current sense pins of the device in a high-impedance state, thus disabling the current monitoring and diagnostic detection. This feature allows multiplexing of the microcontroller analog inputs by sharing of sense resistance and ADC line among different devices.

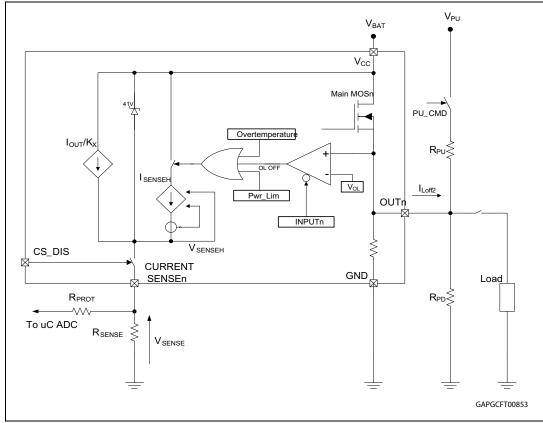


Figure 32. Current sense and diagnostic

3.3.1 Short to V_{CC} and off-state open-load detection

Short to V_{CC}

A short-circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device OFF-state. Small or no current is delivered by the current sense during the ON-state depending on the nature of the short-circuit.

Off-state open-load with external circuitry

Detection of an open load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

An external pull-down resistor R_{PD} connected between output and GND is mandatory to avoid misdetection in case of floating outputs in off-state (see *Figure 32: Current sense and diagnostic*).

577

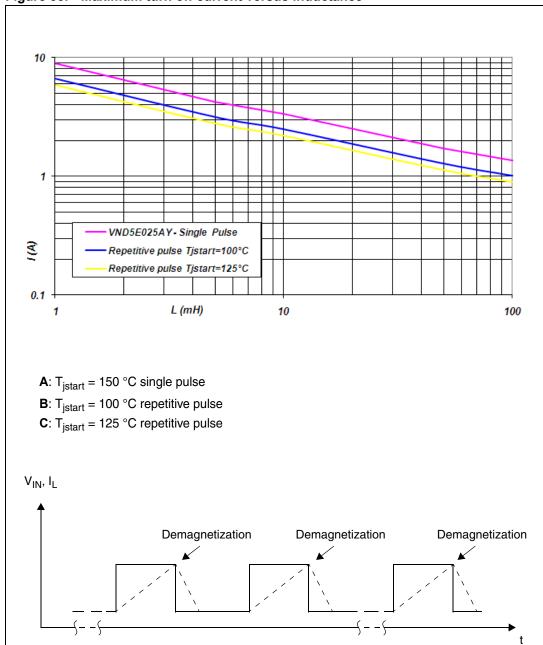
 R_{PD} must be selected in order to ensure $V_{OUT} < V_{OLmin}$ unless pulled-up by the external circuitry:

Equation 2

$$V_{OUT}|_{Pull-up\ OFF} = R_{PD} \cdot I_{L(off2)f} < V_{OLmin} = 2V$$

 $R_{PD} \le 22 \text{ k}\Omega$ is recommended.

For proper open load detection in off-state, the external pull-up resistor must be selected according to the following formula:

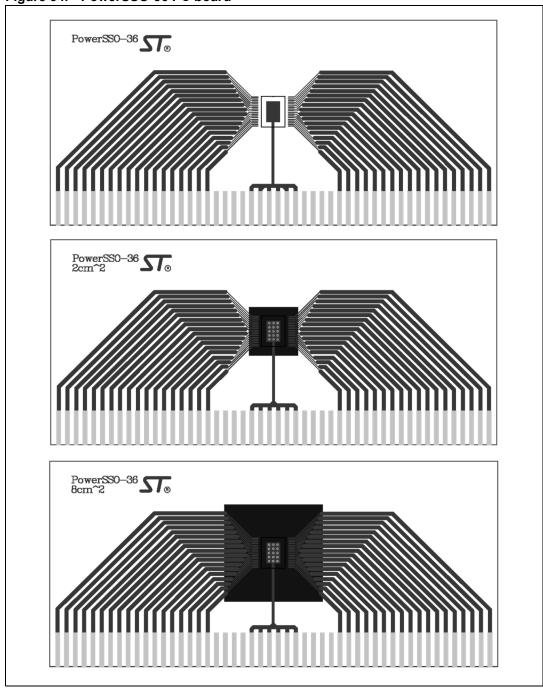

Equation 3

$$V_{OUT}\big|_{Pull-up_ON} = \frac{(R_{PD} \cdot V_{PU}) - (R_{PU} \cdot R_{PD} \cdot I_{L(off2)r})}{(R_{PU} + R_{PD})} > V_{OLmax} = 4V$$

For the values of V_{OLmin} , V_{OLmax} , $I_{L(off2)r}$ and $I_{L(off2)f}$ (see *Table 8: Open-load detection (8 V < V_{CC} < 18 V)*).

3.4 Maximum demagnetization energy (V_{CC} = 13.5 V)

Figure 33. Maximum turn off current versus inductance



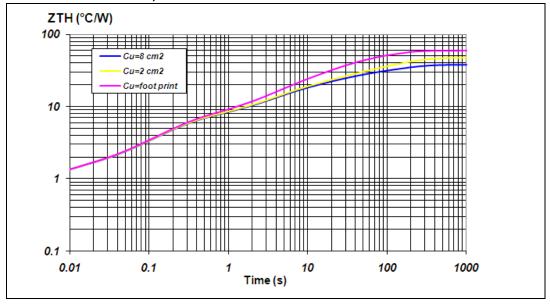
1. Values are generated with $R_L = 0~\Omega$. In case of repetitive pulses, $T_{ijstart}$ (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

4 Package and PCB thermal data

4.1 PowerSSO-36 thermal data

Figure 34. PowerSSO-36 PC board

Layout condition of Rth and Zth measurements (Board finish thickness 1.6 mm +/- 10%; Board double layer; Board dimension 129 mm x 60 mm; Board Material FR4; Cu thickness 0.070 mm; Thermal vias separation 1.2 mm; Thermal via diameter 0.3 mm +/- 0.08 mm; Cu thickness on vias 0.025 mm; Footprint dimension 4.1 mm x 6.5 mm).


577

Doc ID 17703 Rev 4 29/37

RTHjamb RTHj_amb(°C/W) 65 -RTHjamb 60 55 50 45 40 35 30 0 2 6 8 10 PCB Cu heatsink area (cm^2)

Figure 35. $R_{\mbox{\scriptsize thi-amb}}$ vs PCB copper area in open box free air condition (one channel

Figure 36. PowerSSO-36 thermal impedance junction ambient single pulse (one channel on)

Equation 4: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Downloaded from Arrow.com.

Figure 37. Thermal fitting model of a double-channel HSD in PowerSSO-36

 The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 15. Thermal parameters

Area/island (cm ²)	Footprint	2	8
R1 = R7 (°C/W)	0.3		
R2 = R8 (°C/W)	0.9		
R3 (°C/W)	5		
R4 (°C/W)	8		
R5 (°C/W)	18	10	10
R6 (°C/W)	27	23	14
C1 = C7 (W.s/°C)	0.001		
C2 = C8 (W.s/°C)	0.005		
C3 (W.s/°C)	0.04		
C4 (W.s/°C)	0.5		
C5 (W.s/°C)	1	2	2
C6 (W.s/°C)	3	6	9

5 Package information

5.1 ECOPACK®

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

5.2 PowerSSO-36 mechanical data

Figure 38. PowerSSO-36 package dimensions

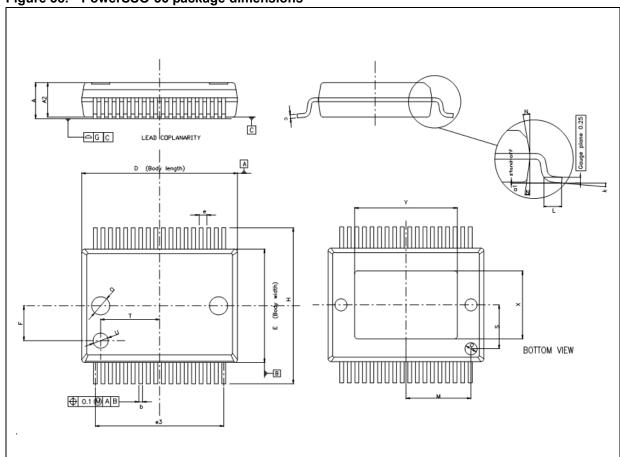


Table 16. PowerSSO-36 mechanical data

O. wash all	millimeters				
Symbol	Min	Тур	Max		
A	2.15	-	2.45		
A2	2.15	-	2.35		
a1	0	-	0.1		
b	0.18	-	0.36		
С	0.23	-	0.32		
D	10.10	-	10.50		
E	7.4	-	7.6		
е	-	0.5	-		
e3	-	8.5	-		
F	-	2.3	-		
G	-	-	0.1		
Н	10.1	-	10.5		
h	-	-	0.4		
k	0°	-	8°		
L	0.55	-	0.85		
М	-	4.3	-		
N	-	-	10°		
0	-	1.2			
Q	-	0.8	-		
S	-	2.9	-		
Т	-	3.65	-		
U	-	1.0	-		
X ⁽¹⁾	4.3	-	5.2		
Y ⁽¹⁾	6.9	-	7.5		

^{1.} Corresponding to internal variation C.

Package information VND5E025AY-E

5.3 Packing information

Figure 39. PowerSSO-36 tube shipment (no suffix)

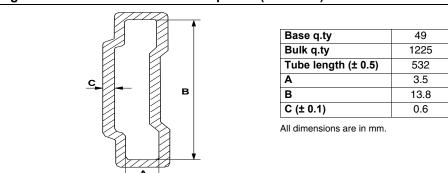
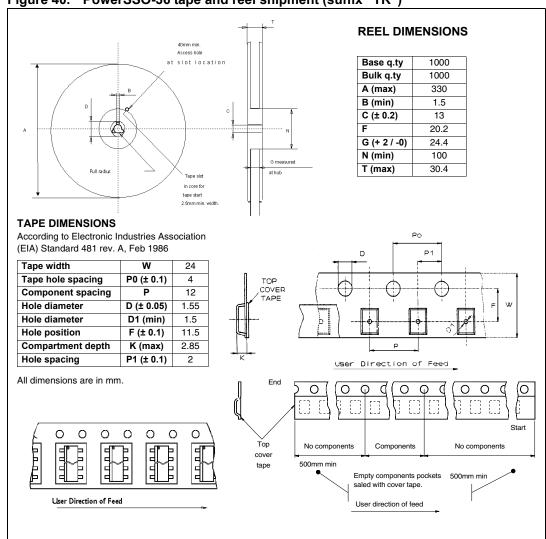



Figure 40. PowerSSO-36 tape and reel shipment (suffix "TR")

VND5E025AY-E Device summary

6 Device summary

Table 17. Device summary

Package	Order codes		
rackage	Tube	Tape and reel	
PowerSSO-36	VND5E025AY-E	VND5E025AYTR-E	

Revision history VND5E025AY-E

7 Revision history

Table 18. Document revision history

Date	Revision	Changes
29-Jul-2010	1	Initial release.
05-Aug-2010	2	Updated following figures: - Figure 35: R _{thj-amb} vs PCB copper area in open box free air condition (one channel on) - Figure 36: PowerSSO-36 thermal impedance junction ambient single pulse (one channel on) Updated Table 15: Thermal parameters
19-Jul-2012	3	Changed document status from "Preliminary data" to "Production data"
19-Sep-2013	4	Updated Disclaimer

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 17703 Rev 4

37/37