Contents

1	Appl	ication diagram
2	Pin o	lescription
3	Elec	trical specifications6
	3.1	Absolute maximum ratings 6
	3.2	Thermal data
	3.3	Electrical specifications
4	Char	acterization curves
5	Outp	out filter
	5.1	Theoretical filter
	5.2	Optimized filter 20
6	Pack	age information
7	Trad	emarks and other acknowledgments 24
8	Revi	sion history

1 Application diagram

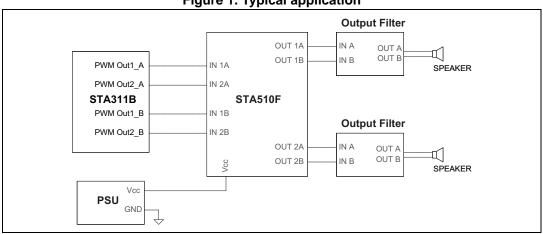
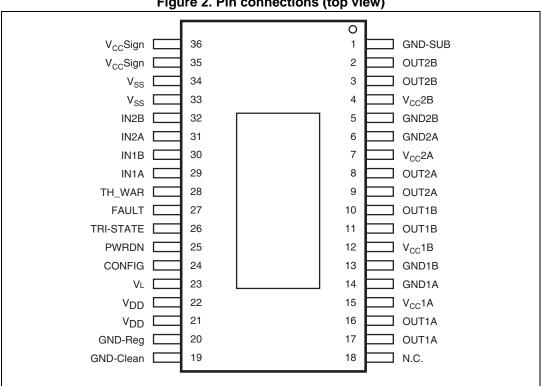



Figure 1. Typical application

Pin description 2

Figure 2. Pin connections (top view)

Table 2. Pin list

Pin	Name	Description
1	GND-SUB	Substrate ground
2, 3	OUT2B	Output half-bridge 2B
4	Vcc2B	Positive supply
5	GND2B	Negative supply
6	GND2A	Negative supply
7	Vcc2A	Positive supply
8, 9	OUT2A	Output half-bridge 2A
10, 11	OUT1B	Output half-bridge 1B
12	Vcc1B	Positive supply
13	GND1B	Negative supply
14	GND1A	Negative supply
15	Vcc1A	Positive supply
16, 17	OUT1A	Output half-bridge 1A
18	NC	Not connected

Pin	Name	Description			
19	GND-clean	Logical ground			
20	GND-Reg	Ground for regulator Vdd			
21, 22	Vdd	5-V regulator referred to ground			
23	VL	High logical state setting voltage			
24	CONFIG	Configuration			
25	PWRDN	Standby			
26	TRI-STATE	Hi-Z			
27	FAULT	Fault pin advisor			
28	TH-WAR	Thermal warning advisor			
29	IN1A	Input of half-bridge 1A			
30	IN1B	Input of half-bridge 1B			
31	IN2A	Input of half-bridge 2A			
32	IN2B	Input of half-bridge 2B			
33, 34	Vss	5-V regulator referred to +V _{CC}			
35, 36	VCCSIGN	Signal positive supply			

Table 2. Pin list (continued)

Table 3. Pin values

Pin	Logical value	Device status			
FAULT ⁽¹⁾	0	Fault detected (short-circuit, or thermal)			
FAULI	1	Normal operation			
TRI-STATE	0	All power stages in Hi-Z state			
TRI-STATE	1	Normal operation			
PWRDN	0	Low-power mode			
FWRDIN	1	Normal operation			
THWAR ⁽¹⁾	0	Temperature of the IC = 130° C			
	1	Normal operation			
	0	Normal operation			
CONFIG ⁽²⁾	1	OUT1A = OUT1B, OUT2A = OUT2B (IF IN1A = IN1B and IN2A = IN2B)			

1. The pin is open collector. To have the high logic value, it needs a pull-up resistor.

2. CONFIG = 1 means connect pin 24 (CONFIG) to pins 21, 22 (Vdd).

3 Electrical specifications

3.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	DC supply voltage (pin 4, 7, 12, 15)	44	V
V _{max}	Maximum voltage on pins 23 to 32	5.5	V
ESD	Max ESD on pins (HBM)	±1000	V
T _{op}	Operating temperature range	0 to 70	°C
T _{stg} , T _j	Storage and junction temperature	-40 to 150	°C

3.2 Thermal data

Table 5. Thermal data

Symbol	Parameter	Min.	Тур.	Max.	Unit
T _{j-case}	Thermal resistance junction to case (thermal pad)		1	2.5	°C/W
T _{jSD}	Thermal shut-down junction temperature		150		°C
T _{warn}	Thermal warning temperature		130		°C
t _{hSD}	Thermal shutdown hysteresis		25		°C

3.3 Electrical specifications

The results in *Table* 6 below are given for the conditions: V_L = 3.3 V, V_{CC} = 37 V and T = 25 °C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
R _{dsON}	Power P-channel/N-channel MOSFET RdsON	ld = 1 A		150	200	mΩ
I _{dss}	Power P-channel/N-channel leakage current				100	μA
g _N	Power P-channel RdsON matching	ld = 1 A	95			%
9 _P	Power N-channel RdsON matching	Id = 1 A	95			%
Dt_s	Low current deadtime (static)	see test circuit Figure 3		10	20	ns
Dt_d	High current deadtime (dynamic)	L = 22 μ H, C = 470 nF, R _L = 8 Ω , Id = 4.5 A, see test circuit <i>Figure 4</i>			50	ns
t _{d ON}	Turn-on delay time	Resistive load			100	ns

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{d OFF}	Turn-off delay time	Resistive load			100	ns
t _r	Rise time	Resistive load, as Figure 4			25	ns
t _f	Fall time	Resistive load, as Figure 4			25	ns
V _{CC}	Supply voltage operating voltage		10		40	V
V _{IN-High}	High level input voltage		V _L /2 + 300 mV			V
V _{IN-Low}	Low level input voltage				V _L /2 – 300 mV	V
I _{IN-H}	High level input current	Pin voltage = V _L		1		μA
I _{IN-L}	Low level input current	Pin voltage = 0.3 V		1		μA
I _{PWRDN-H}	High level PWRDN pin input current	V _L = 3.3 V		35		μA
V _{Low}	Low logical state voltage (pins PWRDN, TRISTATE) (see <i>Table 7</i>)	V _L = 3.3 V			0.8	V
V _{High}	High logical state voltage (pins PWRDN, TRISTATE) (see <i>Table 7</i>)	V _L = 3.3 V	1.7			V
I _{VCC-} PWRDN	Supply current from V _{CC} in power down	PWRDN = 0			3	mA
I _{FAULT}	Output current pins FAULT -TH- WARN when FAULT CONDITIONS	V _{PIN} = 3.3 V		1		mA
I _{VCC-hiz}	Supply current from V_{CC} in tri-state	Pin TRI-STATE = 0		22		mA
I _{VCC}	Supply current from V _{CC} in operation both channel switching)	Input pulse width duty cycle = 50%, switching frequency = 384 kHz, no LC filters;		70		mA
I _{OUT-SH}	Overcurrent protection threshold I _{SC} (short-circuit current limit)		5.5	7	9	A
V _{UV}	Undervoltage protection threshold			7		V
t _{pw_min}	Output minimum pulse width	No load	25		40	ns

Table 6. Electrical specifications (continued)

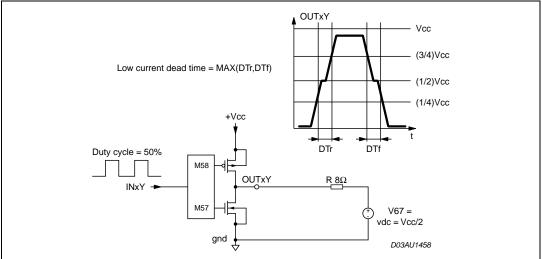
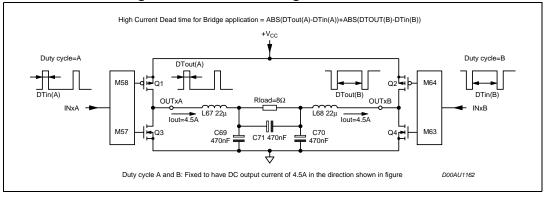

VL	V _{Low} max	V _{High} min	Unit
2.7	0.7	1.5	V
3.3	0.8	1.7	V
5	0.85	1.85	V

Table 7. V_{low} , V_{high} threshold variation with V_l


Table	8.	Logic	truth	table
-------	----	-------	-------	-------

TRI-STATE	INxA	INxB	Q1	Q2	Q3	Q4	Output mode
0	х	х	OFF	OFF	OFF	OFF	Hi-Z
1	0	0	OFF	OFF	ON	ON	DUMP
1	0	1	OFF	ON	ON	OFF	NEGATIVE
1	1	0	ON	OFF	OFF	ON	POSITIVE
1	1	1	ON	ON	OFF	OFF	Not used

Figure 3. Test circuit for low current deadtime

Figure 4. Test circuit for high current deadtime

DocID014268 Rev 4

Downloaded from Arrow.com.

8/26

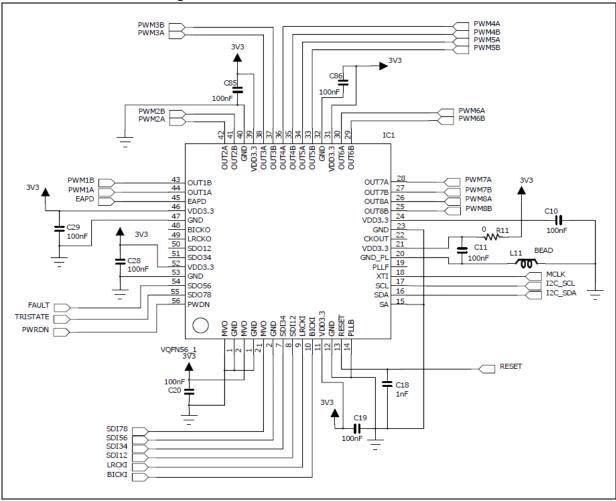


Figure 5. STA311B connections with STA510F

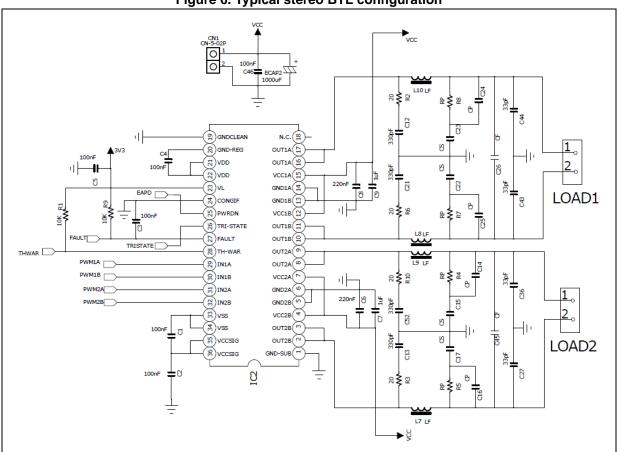
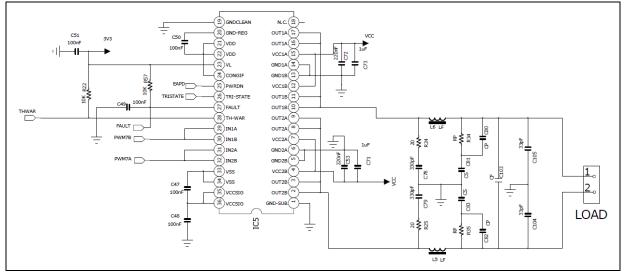



Figure 6. Typical stereo BTL configuration

Figure 7. Typical mono BTL configuration

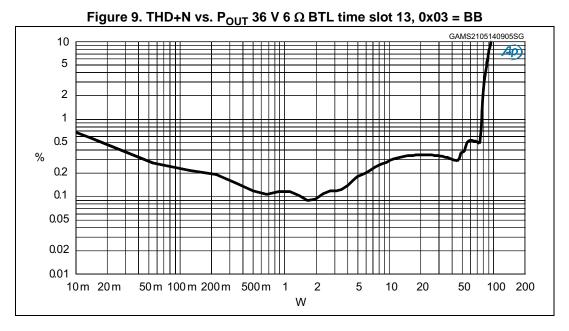



Figure 8. Typical quad half-bridge configuration

4 Characterization curves

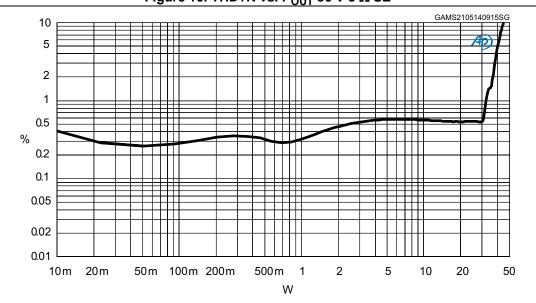


Figure 10. THD+N vs. P_{OUT} 36 V 3 Ω SE

12/26

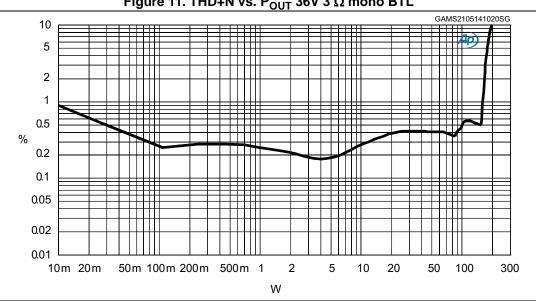



Figure 11. THD+N vs. P_{OUT} 36V 3 Ω mono BTL

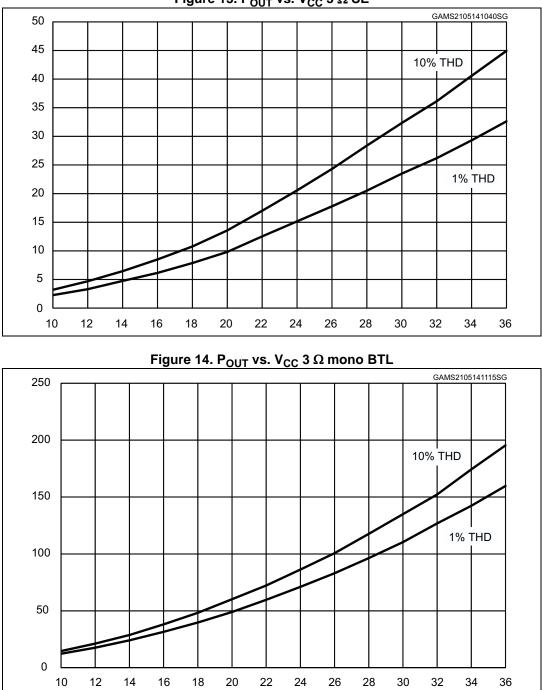
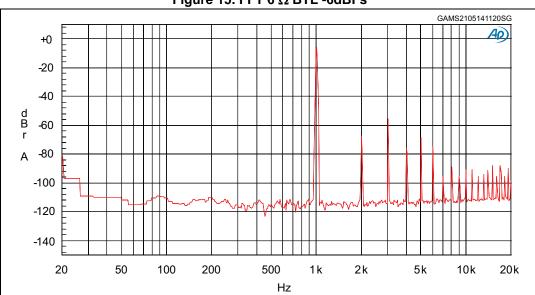
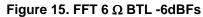
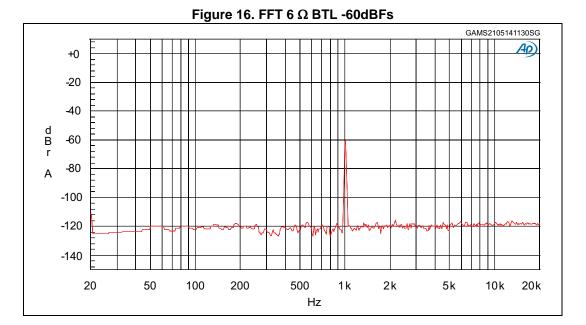
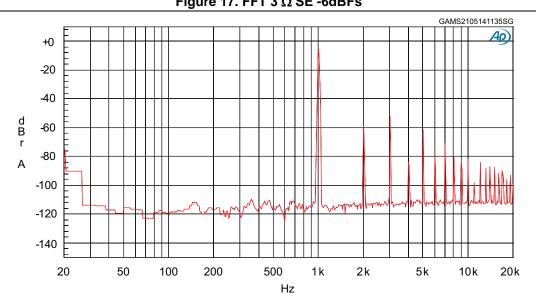
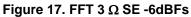
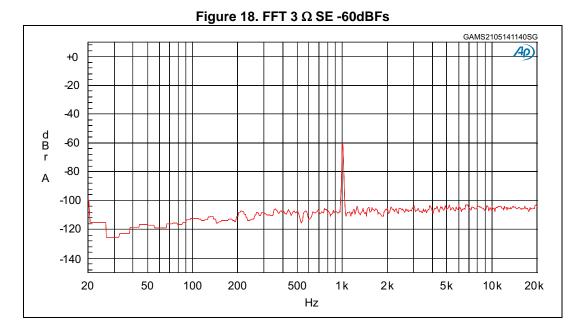





Figure 13. P_{OUT} vs. V_{CC} 3 Ω SE







16/26

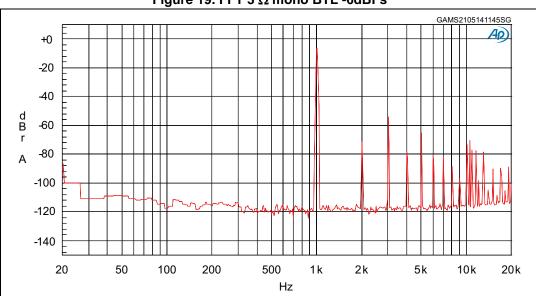
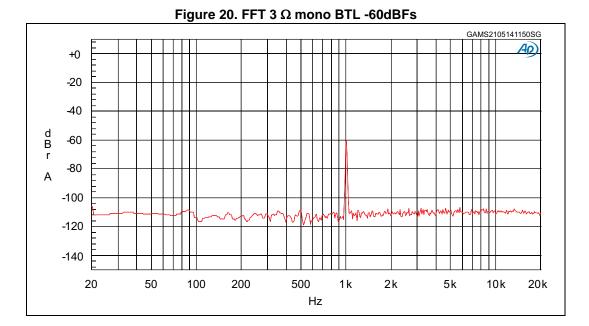
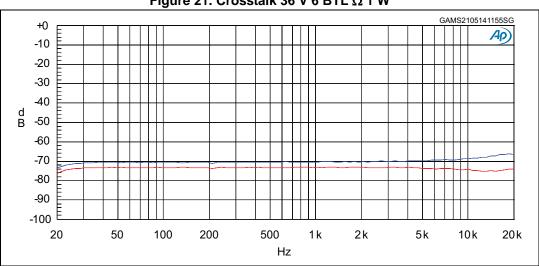
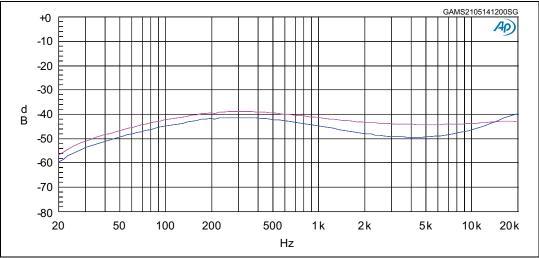




Figure 19. FFT 3 Ω mono BTL -6dBFs



5 Output filter

The differential-mode damping of a hybrid filter under no-load conditions is not as good as a pure common-mode filter because most of the high-frequency current flows through the larger capacitor across the speaker terminals. Normally this isn't a problem because the speaker provides the differential-mode damping, but if the amplifier is operated without the speaker connected, for instance when doing testing in production line, then the damping will not be as good.

Care needs to be taken to insure that the damping of a hybrid filter is good enough to protect the amplifier under no-load conditions, thus avoiding peak of voltage that exceed the absolute maximum voltage of the amplifier.

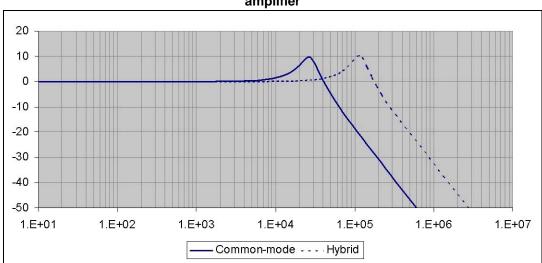


Figure 23. Output filter frequency response with and without load connected to the amplifier

To allow the right filter selection both sets of coefficients are provided.

5.1 Theoretical filter

Perfect when using amplifiers always connected to speakers

Table 9	Theoretical	table SE
---------	--------------------	----------

Load LC Low-Pa		ass Filter	Γ	Damping networ	k
Impedance	LF	CF	CS	СР	RP
3	15 µH	1 µF	100 nF	100 nF	6.2 Ω
4	22 µH	680 nF	100 nF	100 nF	6.2 Ω
6	33 µH	470 nF	100 nF	100 nF	6.2 Ω
8	47 µH	330 nF	100 nF	100 nF	6.2 Ω

See Figure 8.

Load	LC Low-Pass Filter		Γ	k	
Impedance	LF	CF	CS	СР	RP
3	10 µH	1 µF	220 nF	220 nF	3.3 Ω
4	10 µH	1 µF	220 nF	220 nF	3.3 Ω
6	15 µH	680 nF	100 nF	100 nF	4.7 Ω
8	22 µH	470 nF	100 nF	100 nF	6.2 Ω

Table 10. Theoretical table BTL

See Figure 6.

Table 11.	Theoretical	table PBTL
	1 HCOLCHOUL	

Load	LC Low-P	LC Low-Pass Filter		Damping network		
Impedance	LF	CF	CS	СР	RP	
3	10 µH	1 µF	220 nF	220 nF	2.7 Ω	
4	10 µH	1 µF	220 nF	220 nF	3.3 Ω	
6	15 µH	680 nF	100 nF	100 nF	6.2 Ω	
8	22 µH	470 nF	100 nF	100 nF	6.2 Ω	

See Figure 7.

5.2 Optimized filter

Suggest to avoid resonant peak when running amplifiers without load

Load	Load LC Low-P		Pass Filter Damp		k
Impedance	LF	CF	CS	СР	RP
3	15 µH	680 µF	100 nF	100 nF	6.2 Ω
4	22 µH	470 nF	100 nF	100 nF	6.2 Ω
6	33 µH	330 nF	100 nF	100 nF	6.2 Ω
8	47 µH	220 nF	100 nF	100 nF	6.2 Ω

Table 12. Filter optimized to minimize the peak SE

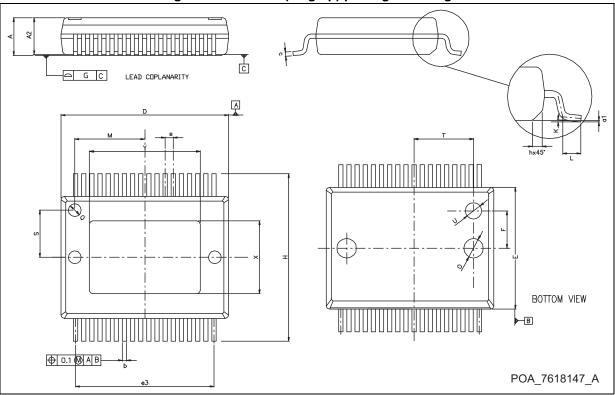
See Figure 8.

		•		•		
Load	LC Low-Pass Filter		Γ	Damping network		
Impedance	LF	CF	CS	СР	RP	
3	10 µH	680 nF	220 nF	220 nF	3.3 Ω	
4	10 µH	680 nF	220 nF	220 nF	3.3 Ω	
6	15 µH	470 nF	100 nF	100 nF	4.7 Ω	
8	22 µH	330 nF	100 nF	100 nF	6.2 Ω	

Table 13. Filter optimized to minimize the peak BTL

See Figure 6.

Table 14. Filter optimized to minimize the peak PBTL


Load	LC Low-P	ass Filter	ſ	Damping networ	k
Impedance	LF	CF	CS	СР	RP
3	10 µH	680 nF	220 nF	220 nF	2.7 Ω
4	10 µH	680 nF	220 nF	220 nF	3.3 Ω
6	15 µH	470 nF	100 nF	100 nF	6.2 Ω
8	22 µH	330 nF	100 nF	100 nF	6.2 Ω

See Figure 7.

6 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Figure 24. PSSO36 (slug up) package drawing

Table 15. PSSO36 (slug up) package dimensions						
Dim.	mm.				inch.	
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.
А	2.15		2.47	0.084		0.097
A2	2.15		2.40	0.084		0.094
a1	0		0.075	0		0.003
b	0.18		0.36	0.007		0.014
с	0.23		0.32	0.009		0.012
D ⁽¹⁾	10.10		10.50	0.398		0.413
E ⁽¹⁾	7.4		7.6	0.291		0.299
е		0.50			0.020	
e3		8.50			0.035	
F		2.3			0.090	
G			0.10			0.004
G1			0.06			0.002
Н	10.10		10.50	0.398		0.413
h			0.40			0.016
L	0.55		0.85	0.022		0.033
М		4.3			0.169	
Ν		10° (max.)			10° (max.)	
0		1.2		0.047		
Q		0.8			0.031	
S		2.9			0.114	
Т		3.65			0.144	
U		1.0			0.039	
Х	4.10		4.70	0.161		0.185
Y	6.50		7.10	0.256		0.279

Table 15. PSSO36 (slug up) package dimensions

1. "D and E" do not include mold flash or protrusion. Mold flash or protrusion shall not exceed 0.15 mm (0.006").

7 Trademarks and other acknowledgments

FFX is a STMicroelectronics proprietary digital modulation technology. ECOPACK is a registered trademark of STMicroelectronics.

24/26

8 Revision history

Date	Revision	Changes
13-Dec-2007	1	Initial release.
28-Jun-2011	2	Added part number STA510FTR to <i>Table 1: Device summary</i> Updated ECOPACK [®] text in <i>Section 6: Package information</i> Minor textual updates
02-Sep-2011	3	Updated package to PowerSSO36 throughout datasheet Corrected typographical error in <i>Features</i> Updated <i>Figure 1</i> Updated <i>Figure 2</i> Updated <i>Figure 21</i>
03-Jun-2014	4	 Added: Figure 5 on page 9, Figure 6 on page 10, Figure 7 on page 10 and Figure 8 on page 11 Section 4: Characterization curves Section 5: Output filter

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

> ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

26/26

