NO.EA-265-171220 ## **APPLICATIONS** - Power source for battery-powered equipment. - Power source for portable communication equipment - Power source for electrical appliances such as cameras, VCRs and camcorders. - Power source for home appliances and Notebook PC. ## **SELECTION GUIDE** The output voltage, the auto discharge function⁽¹⁾, and the package type for the IC can be selected at the user's request. | Product Name | Package | Quantity per Reel | Pb Free | Halogen Free | | |------------------|----------------|-------------------|---------|--------------|--| | RP132K001*-TR | DFN(PLP)1820-6 | 5 000 pag | Yes | Voc | | | RP132Kxx1*-TR | DFN(PLP)1020-0 | 5,000 pcs | 162 | Yes | | | RP132H001#-T1-FE | SOT-89-5 | 1 000 pag | Yes | Yes | | | RP132Hxx1#-T1-FE | 301-69-5 | 1,000 pcs | 162 | | | | RP132S001#-E2-FE | HSOP-6J | 1 000 pag | Yes | Yes | | | RP132Sxx1*-E2-FE | H3OF-0J | 1,000 pcs | 162 | res | | | RP132J001#-T1-FE | TO-252-5-P2 | 3,000 pcs | Yes | Yes | | | RP132Jxx1#-T1-FE | 10-202-0-P2 | 3,000 pcs | 162 | res | | RP132x001x is the adjustable output voltage type. xx: The output voltage can be designated in the range from 0.8V(08) to 5.5V(55) in 0.1V step. - *: The combination of the auto discharge function and delay pin (for setting inrush current limit time) are as follows. - B: without auto discharge function - D: with auto discharge function - E: without auto discharge function, with delay pin (for setting inrush current limit time) - F: with auto discharge function and delay pin (for setting inrush current limit time) - #: The auto discharge function at off state are options as follows. - B: without auto discharge function at off state - D: with auto discharge function at off state ⁽¹⁾ Auto-discharge function quickly lowers the output voltage to 0V, when the chip enable signal is switched from the active mode to the standby mode, by releasing the electrical charge accumulated in the external capacitor. NO.EA-265-171220 # **BLOCK DIAGRAMS** • Fixed Output Voltage Type (HSOP-6J / SOT89-5) • Fixed Output Voltage Type (TO-252-5-P2 / DFN(PLP)1820-6) • Fixed Output Voltage Type with DELAY pin (HSOP-6J) NO.EA-265-171220 • Fixed Output Voltage Type with DELAY pin (DFN(PLP)1820-6) • Adjustable Output Voltage Type (HSOP-6J / SOT-89-5 / TO-252-5-P2 /DFN(PLP)1820-6) Adjustable Output Voltage Type with DELAY pin (DFN(PLP)1820-6) # **PIN DESCRIPTIONS** ### RP132K⁽¹⁾ (DFN(PLP)1820-6) Pin Description | Pin No. | Symbol | Pin Description | | | | |--|--------|--|--|--|--| | 1 | VOUT | Output Pin ⁽²⁾ | | | | | 2 | VFB | Feed Back Pin ⁽²⁾ | | | | | 3 | GND | Ground Pin | | | | | 4 | CE | Chip Enable Pin ("H" Active) | | | | | F | NC | No Connection (RP132K001B/D, RP132Kxx1B/D) | | | | | DELAY Delay Pin for setting inrush current limit time (RP132K001E/F, | | Delay Pin for setting inrush current limit time (RP132K001E/F, RP132Kxx1E/F) | | | | | 6 | VDD | Input Pin | | | | ^{*}Tab is GND level. (They are connected to the reverse side of this IC.) The tab is better to be connected to the GND, but leaving it open is also acceptable. ⁽¹⁾ When using Adjustable Output Voltage Type (RP132K001x), please follow "Notes on the Adjustable Output Voltage Type Settings". ⁽²⁾ When using Fixed Output Voltage Type(RP132Kxx1x), the VOUT pin and the VFB pin should be connected. NO.EA-265-171220 # RP132H⁽¹⁾ (SOT-89-5) Pin Description | Pin No. | Symbol | Pin Description | | | |---------|--------|---|--|--| | | CE | Chip Enable Pin ("H" Active) (RP132Hxx1B/D) | | | | 1 VFB | | Feed Back Pin (RP132H001B/D) | | | | 2 | GND | Ground Pin | | | | 3 | NC | NC No Connection (RP132Hxx1B/D) | | | | | | Chip Enable Pin ("H" Active) (RP132H001B/D) | | | | 4 | VDD | Input Pin | | | | 5 | VOUT | Output Pin | | | # RP132S⁽¹⁾ (HSOP-6J) Pin Description | Pin No. | Symbol | Pin Description | | | |---------|--------|--|--|--| | 1 | VOUT | Output Pin | | | | 2 | GND | Ground Pin ⁽²⁾ | | | | | NC | No Connection (RP132Sxx1B/D) | | | | 3 | VFB | Feed Back Pin (RP132S001B/D) | | | | | DELAY | Delay Pin for setting inrush current limit time (RP132Sxx1E/F) | | | | 4 | CE | Chip Enable Pin ("H" Active) | | | | 5 | GND | Ground Pin ⁽²⁾ | | | | 6 | VDD | Input Pin | | | # RP132J⁽¹⁾ (TO-252-5-P2) Pin Description | Pin No. | Symbol | Pin Description | | |---------|--------|------------------------------|--| | 1 | CE | Chip Enable Pin ("H" Active) | | | 2 | VDD | Input Pin | | | 3 | GND | Ground Pin | | | 4 | VOUT | Output Pin ⁽³⁾ | | | 5 | VFB | Feed Back Pin ⁽³⁾ | | ^{*}Tab is GND level. (They are connected to the reverse side of this IC.) The tab is better to be connected to the GND, but leaving it open is also acceptable. ⁽¹⁾ When using Adjstable Output Voltage Type (RP132x001x), please follow "Notes on Adjustable Output Voltage Type Settings". $[\]ensuremath{^{(2)}}$ GND pins must be wired each other when mounted on boards. ⁽³⁾ When using Fixed Output Voltage Type(RP132Jxx1x),VOUT pin and VFB pin should be connected. NO.EA-265-171220 # **ABSOLUTE MAXIMUM RATINGS** | Symbol | | Rating | Unit | | | |-----------------|----------------------------------|--------------------------------|-------------|------|--| | VIN | Input Voltage | | 7.0 | V | | | Vce | Input Voltage (CE Pin | | -0.3 to 7.0 | V | | | V _{FB} | Input Voltage (VFB Pi | n) | -0.3 to 7.0 | V | | | Vout | Output Voltage | -0.3 to V _{IN} +0.3 | V | | | | | | DFN(PLP)1820-6, JEDEC STD.51-7 | 2200 | m\\\ | | | P_{D} | Power Dissipation(1) | SOT-89-5, JEDEC STD.51-7 | 2600 | | | | PD | Power Dissipation ⁽¹⁾ | HSOP-6J, JEDEC STD.51-7 | 2700 | mW | | | | | TO-252-5-P2, JEDEC STD.51-7 | 3800 | | | | Tj | Junction Temperature | -40 to 125 | °C | | | | Tstg | Storage Temperature | -55 to 125 | °C | | | ### **ABSOLUTE MAXIMUM RATINGS** Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings are not assured. # RECOMMENDED OPERATING CONDITIONS | Symbol | Item | Rating | Unit | |-----------------|-----------------------------|------------|------| | V _{IN} | Input Voltage | 1.4 to 6.5 | V | | Ta | Operating Temperature Range | -40 to 85 | °C | ### **RECOMMENDED OPERATING CONDITIONS** All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such ratings by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions. ⁽¹⁾ Refer to POWER DISSIPATION for detailed information. NO.EA-265-171220 ## **ELECTRICAL CHARACTERISTICS** $V_{\text{IN}} = \text{Set V}_{\text{OUT}} + 1.0 \text{V, I}_{\text{OUT}} = 1 \text{mA, C}_{\text{IN}} = 2.2 \mu \text{F, C}_{\text{OUT}} = 2.2 \mu \text{F (V}_{\text{OUT}} \leq 3.6 \text{V)} / 4.7 \mu \text{F (V}_{\text{OUT}} > 3.6 \text{V)}$ The specification in ____ is checked and guaranteed by design engineering at $-40^{\circ}\text{C} \leq \text{Ta} \leq 85^{\circ}\text{C}$, unless otherwise noted. RP132xxx1B/D(Fixed Output Voltage Type) / RP132S/Kxx1E/F(Fixed Output Voltage Type with DELAY pin) | Symbol | Item | Conditi | ons | Min. | Тур. | Max. | Unit | |-----------------------------------|---------------------------------|--|-------------------------|-----------|----------|--------|-------| | | | Ta = 25°C | Vout > 1.5V | ×0.99 | | ×1.01 | V | | \ | Outrot Maltana | 1a = 25°C | Vo∪т ≤ 1.5V | -15 | | 15 | mV | | Vout | Output Voltage | –40°C ≤ Ta ≤ 85°C | Vоит > 1.5V | ×0.981 | | ×1.019 | V | | | | -40 C \(\text{1a} \(\text{50} \) C | Vo∪т ≤ 1.5V | -29 | | 29 | mV | | I _{LIM} | Output Current Limit | | | 1 | | | Α | | $\Delta V_{OUT}/$ | Load Damiletian | 0.1mA ≤ louт ≤ 300m | A | | 3 | 20 | \/ | | $\Delta lout$ | Load Regulation | 0.1mA ≤ lout ≤ 1A | | | 5 | 60 | mV | | V _{DIF} | Dropout Voltage | Refer | to the following "[| Dropout \ | /oltage" | • | | | Iss | Supply Current | Iout=0mA (Vin=6.5) | /) | | 65 | 85 | μA | | Istandby | Standby Current | VCE=0V, VIN=6.5V | | | 0.15 | 0.60 | μA | | $\Delta V_{OUT}/$ ΔV_{IN} | Line Regulation | Set Vour+0.5V ≤ V _{IN} ≤ 6.5V
* However, V _{IN} ≥1.6V | | | 0.05 | 0.10 | %/V | | | | f=1kHz | V _{OUT} ≤ 3.3V | | 70 | | | | R_R | Ripple Rejection | Ripple 0.2Vp-p
lout=100mA | Vоит > 3.3V | - | 60 | | dB | | VIN | Input Voltage | | | 1.4 | | 6.5 | V | | I _{SC} | Short Current Limit | V _{OUT} =0V | | | 250 | | mA | | I _{PD} | CE Pull-down Current | | | | 0.3 | 0.7 | μA | | V _{CEH} | CE Input Voltage "H" | | | 1.0 | | | V | | VCEL | CE Input Voltage "L" | | | | | 0.4 | V | | en | Output Noise | BW=10Hz to 100kHz | | | 70 | | μVrms | | T _{TSD} | Thermal Shutdown
Temperature | Junction Temperature | | | 165 | | °C | | TTSR | Thermal Shutdown | Junction Temperatur | e. | | 95 | | °C | All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25°C) except Output Noise, Ripple Rejection, Dropout Voltage at 1A Output Current and Load Regulation and Thermal Shutdown. Junction Temperature VIN=4.0V, VCE=0V $V_{IN}=4.0V$ $^{\circ}C$ Ω μΑ 95 50 1.2 1.7 0.7 TTSR RLOW **I**DELAY Released Temperature Low Output Nch Tr. ON Resistance (D/F version) DELAY pin Current (DELAY pin version) | RP132x | | |------------------|--| | NO EA 265 171220 | | The specification in \square is checked and guaranteed by design engineering at -40° C \leq Ta \leq 85°C, unless otherwise noted. Dropout Voltage (Ta = 25°C) | Output Voltage | Dropout Voltage V _{DIF} (V) | | | | | | |----------------------|--------------------------------------|------|------|-----------|------|------| | V _{OUT} (V) | Condition | Тур. | Max. | Condition | Тур. | Max. | | 0.8 ≤ Vout < 0.9 | | 0.67 | 0.89 | | 1.20 | 1.54 | | 0.9 ≤ Vouт < 1.0 | | 0.59 | 0.82 | Іоит=1А | 1.10 | 1.46 | | 1.0 ≤ Vouт < 1.1 | | 0.51 | 0.73 | | 1.05 | 1.39 | | 1.1 ≤ Vouт < 1.2 | -
Іоит=300mA | 0.42 | 0.63 | | 0.96 | 1.31 | | 1.2 ≤ Vouт < 1.5 | TIOUT=300IIIA | 0.36 | 0.54 | | 0.90 | 1.23 | | 1.5 ≤ Vouт < 2.6 | | 0.24 | 0.33 | | 0.78 | 1.05 | | 2.6 ≤ Vout < 3.3 | | 0.15 | 0.21 | | 0.52 | 0.72 | | 3.3 ≤ Vouт ≤ 5.5 | | 0.13 | 0.18 | | 0.46 | 0.68 | NO.EA-265-171220 $V_{\text{IN}} = Set \ V_{\text{OUT}} + 1.0 \text{V}, \ I_{\text{OUT}} = 1 \text{mA}, \ C_{\text{IN}} = 2.2 \mu \text{F}, \ C_{\text{OUT}} = 2.2 \mu \text{F}, \ V_{\text{OUT}} \leq 3.6 \text{V}, \ 4.7 \mu \text{F} \ V_{\text{OUT}} > 3.6 \text{V}$ The specification in \square is checked and guaranteed by design engineering at -40° C \leq Ta \leq 85°C, unless otherwise noted. RP132x001B/D(Adjustable Output Voltage Type) / RP132K001E/F(Adjustable Output Voltage Type with DELAY pin) $(Ta = 25^{\circ}C)$ | Symbol | Item | Condition | ıs | Min. | Тур. | Max. | Unit | |-----------------------------------|--|---|-----------------------------------|-------|-------|-------|-------| | | E | Ta =25°C | ., ., | 0.785 | 0.800 | 0.815 | ., | | V_{FB} | Feedback Voltage | -40°C ≤ Ta ≤ 85°C | V _{OUT} =V _{FB} | 0.771 | | 0.829 | V | | V _{оит} | Output Voltage
Adjusting Range | | | 0.8 | | 5.5 | V | | I _{LIM} | Output Current Limit | $V_{OUT} = V_{FB}$ | | 1 | | | Α | | ΔV _{OUT} / | Lood Dogulation | 0.1mA ≤ I _{OUT} ≤ 300m | A | | 3 | 20 | mV | | ΔI_{OUT} | Load Regulation | 0.1mA ≤ I _{OUT} ≤ 1A | | | 5 | 60 | IIIV | | | Dranaut Valtaga | V V | I _{OUT} =300mA | | 0.67 | 0.89 | V | | V_{DIF} | Dropout Voltage | Vout=V _{FB} | I _{OUT} =1A | | 1.20 | 1.54 | V | | ISS | Supply Current | Vout=Vfb, lout=0mA | (VIN=6.5V) | | 65 | 85 | μA | | Istandby | Standby Current | Vce=0V, Vin=6.5V | | | 0.15 | 0.60 | μA | | $\Delta V_{OUT}/$ ΔV_{IN} | Line Regulation | V _{OUT} =V _{FB} , 1.6V ≤ V _{IN} ≤ 6.5V | | | 0.05 | 0.10 | %/V | | R _R | Ripple Rejection | f=1kHz,
Ripple 0.2Vp-p,
Iout=100mA | Vouт=Vғв | | 70 | | dB | | VIN | Input Voltage | | | 1.4 | | 6.5 | V | | Isc | Short Current Limit | V _{OUT} =V _{FB} =0V | | | 250 | | mA | | I _{PD} | CE Pull-down Current | | | | 0.3 | 0.7 | μΑ | | V _{CEH} | CE Input Voltage "H" | | | 1.0 | | | V | | Vcel | CE Input Voltage "L" | | | | | 0.4 | V | | en | Output Noise | BW=10Hz to 100kHz | | | 70 | | μVrms | | T _{TSD} | Thermal Shutdown Temperature | Junction Temperature | | | 165 | | °C | | T _{TSR} | Thermal Shutdown
Released Temperature | Junction Temperature | | | 95 | | °C | | R _{LOW} | Low Output Nch Tr. ON Resistance (D/F version) | V _{IN} =4.0V, V _{CE} =0V | | | 50 | | Ω | | IDELAY | DELAY pin Current
(DELAY pin version) | V _{IN} =4.0V | | 0.7 | 1.2 | 1.7 | μΑ | All test items listed under Electrical Characteristics are done under the pulse load condition (Tj≈Ta=25°C) except Output Noise, Ripple Rejection, Dropout Voltage at 1A Output Current and Load Regulation and Thermal Shutdown. NO.EA-265-171220 # **APPLICATION INFORMATION** # **Typical Application Circuits** Fixed Output Voltage Type (HSOP-6J/ SOT89-5) Fixed Output Voltage Type (TO-252-5-P2/ DFN(PLP)1820-6) Adjustable Output Voltage Type (HSOP-6J / SOT89-5/ TO-252-5-P2 / DFN(PLP)1820-6) NO.EA-265-171220 ### Fixed Output Voltage Type with DELAY pin (HSOP-6J) # Fixed Output Voltage Type with DELAY pin (DFN(PLP)1820-6) ## Adjustable Output Voltage Type with DELAY pin (DFN(PLP)1820-6) ### **Recommended External Components** | Vouт | Capacitors | | | | |--------------|-----------------------|---------------------------|--------------------|--| | Vouт ≤ 3.6V | C _{IN} (C1) | Kyocera 2.2µF (size:1005) | [CM05X5R225M06A] | | | VOUT ≥ 3.6 V | C _{OUT} (C2) | Kyocera 2.2µF (size:1608) | [CM105X5R225K06AB] | | | V 2.6V | C _{IN} (C1) | Kyocera 2.2μF (size:1005) | [CM05X5R225K06A] | | | Vоит > 3.6V | C _{OUT} (C2) | Kyocera 4.7µF (size:1608) | [CM105X5R475M06AB] | | Please refer to "Technical Notes on Adjustable Output Voltage Type" when using R1 and R2 as output capacitors. Also refer to "Inrush Current Limit Time Settings" concerning with C_D. ### **Technical Notes on the External Components** When using this IC, consider the following points: #### **Phase Compensation** In this IC, phase compensation is made for securing stable operation even if the load current is varied. For this purpose, use a $4.7\mu F$ or more capacitor C_{OUT} between V_{OUT} pin and GND pin, and as close as possible to the pins. If a tantalum capacitor is used, and its ESR (Equivalent Series Resistance) of C_{OUT} is large, the loop oscillation may result. Because of this, select C_{OUT} carefully considering its frequency characteristics. #### **PCB Layout** Make V_{DD} and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result. Connect a 2.2 μF or more capacitor C_{IN} between V_{DD} and GND pin with a capacitance value as "Recommendation value of the external capacitors" above or more, and as close as possible to the pins. Set external components, especially the output capacitor C_{OUT} , as close as possible to the IC, and make wiring as short as possible. When using the Adjustable Output Voltage Type, the transient response could be affected by the external resistors. Evaluate the circuit taking the actual conditions of use into account. #### **Output Voltage Setting Method (Adjustable Output Voltage Type)** RP132x081x can be adjusted the output voltage up to 5.5V by using the external divider resistors. Also, please use $16k\Omega$ or less for R2 resistor. If the V_{FB} voltage is described as setV_{FB}, the output voltage can be set by using the following equations. SetV_{FB} is equal to 0.8V. The V_{OUT} pin of RP132x081x should be connected to the V_{FB} pin. #### NO.EA-265-171220 R_{IC} of RP132x is approximately Typ.1.3M Ω (Ta=25°C, this value is guaranteed by design.). The value could be affected by the temperature, therefore evaluate the circuit taking the actual conditions of use into account. #### **Inrush Current Limit Time Settings** The RP132xSeries include the circuit which can limit the inrush current at start-up to 500mA or less. The current limit time of B/D version is fixed internally as approximately Typ.500 μ s. On the other hand, the current limit times of E/F versions are adjustable by controlling the DELAY pin value, which is the capacitance value connected between DLEAY pin and GND pin. The relation between Inrush Current Limit Time ($t_D[s]$) and the DELAY pin capacitance ($C_D[F]$) can be described in the following equation. $$t_D = (C_D + 70 \times 10^{-12}) \times 0.525 \times 10^6$$ When not using C_D on E/F versions, DELAY pin should be open. In this case, C_D =0 is applied to the above equation and as a result, $37\mu s$ can be obtained. That means, when using C_D on E/F versions, the inrush current limit time will be more than $37\mu s$. Please note that during the inrush current limit time, the load current cannot be more than the limited current. ### **ESR vs. Output Current** The relations between IouT (Output Current) and ESR of an output capacitor are shown below. The conditions when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph. #### **Measurement Conditions** Frequency Band: 10Hz to 2MHz Temperature: -40°C to 85°C Hatched Area : Noise level is under $40\mu Vms$ (Avg.) C_{IN} (C1) : $2.2\mu F$ (Kyocera CM05X5R225M06A) Cout (C2) : $2.2\mu F$ (Vout = 0.8V, Kyocera CM105X5R225K06AB) $4.7\mu F (V_{OUT} = 5.5V, Kyocera CM105X5R475M06AB)$ #### RP132x081x #### RP132x551x NO.EA-265-171220 # TYPICAL CHARACTERISTICS Typical Characteristics are intended to be used as reference data; they are not guaranteed. ## 1) Output Voltage vs. Input Voltage (Ta=25°C) # 2) Supply Current vs. Input Voltage (Ta=25°C) RP13x081x NO.EA-265-171220 # 3) Supply Current vs. Temperature RP132x081x ### RP132x331x ### RP132x551x NO.EA-265-171220 # 4) Output Voltage vs. Temperature RP132x081x RP132x151x 1.54 ### RP132x331x RP132x551x # 5) Dropout Voltage vs. Output Current RP132x081x # RP132x151x NO.EA-265-171220 # 6) Dropout Voltage vs. Set Output Voltage # 7) Ripple Rejection vs. Input Voltage (C_{IN}=none, Ripple=0.2Vp-p, Ta=25°C) RP132x331x RP132x331x #### NO.EA-265-171220 # 8) Ripple Rejection vs. Frequency (C_{IN} =none, Ta=25°C) # 9) Input Transient Response (C_{IN} =none, I_{OUT}=100mA, tr=tf=5μs, Ta=25°C) NO.EA-265-171220 # 10) Load Transient Response (V_{IN}=V_{OUT}+1.0V, C_{IN} =Ceramic 2.2μF, tr=tf=0.5μs, Ta=25°C) #### RP132x081x C2=Ceramic2.2µF 0.90 60 0.88 Output Current lour (mA) Output Voltage Vour (V) 0 0.86 **Output Current** 0mA ⇔ 30mA 0.84 0.82 0.80 Output Voltage 0.78 0.76 20 40 60 80 100 120 140 160 180 Time t (µs) NO.EA-265-171220 #### RP132x551x # 11) Turn on Speed with CE pin (C_{IN} =Ceramic 2.2μF, Ta=25°C) ### NO.EA-265-171220 #### RP132x551x # 12) Turn off Speed with CE pin (D version) (C_{IN} =Ceramic 2.2μF, Ta=25°C) ### RP132x081D #### RP132x331D ### RP132x551D # 13) Inrush Current (C_{IN} =Ceramic 2.2μF, I_{OUT}=100mA, Ta=25°C) #### RP132x551x # 14) Minimum Operating Voltage RP132x081x The operation rage that can output 0.8V is shown by the hatched area in the graph. NO.EA-265-171220 # 15) Inrush Current Limit Time vs. C_D Capacitance (E / F Version) RP132x081x # 16) Inrush Current Limit Time vs. Input Voltage (E / F Version) RP132x081x The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. #### **Measurement Conditions** | Item | Measurement Conditions | |------------------|--| | Environment | Mounting on Board (Wind Velocity = 0 m/s) | | Board Material | Glass Cloth Epoxy Plastic (Four-Layer Board) | | Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm | | | Outer Layer (First Layer): Less than 95% of 50 mm Square | | Copper Ratio | Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square | | | Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square | | Through-holes | φ 0.2 mm × 34 pcs | #### **Measurement Result** $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$ | Item | Measurement Result | |--|--------------------| | Power Dissipation | 2200 mW | | Thermal Resistance (θja) | θja = 45°C/W | | Thermal Characterization Parameter (ψjt) | ψjt = 18°C/W | θja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter **Power Dissipation vs. Ambient Temperature** **Measurement Board Pattern** The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: | Total Hours of Use | Total Years of Use (4 hours/day) | |--------------------|----------------------------------| | 13,000 hours | 9 years | DFN(PLP)1820-6 Package Dimensions (Unit: mm) **RICOH** i ^{*} The tab on the bottom of the package is substrate level (GND). It is recommended that the tab be connected to the ground plane on the board, or otherwise be left floating. The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. #### **Measurement Conditions** | Item | Measurement Conditions | |------------------|--| | Environment | Mounting on Board (Wind Velocity = 0 m/s) | | Board Material | Glass Cloth Epoxy Plastic (Four-Layer Board) | | Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm | | | Outer Layer (First Layer): Less than 95% of 50 mm Square | | Copper Ratio | Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square | | | Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square | | Through-holes | φ 0.3 mm × 13 pcs | #### **Measurement Result** $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$ | Item | Measurement Result | |--|--------------------| | Power Dissipation | 2600 mW | | Thermal Resistance (θja) | θja = 38°C/W | | Thermal Characterization Parameter (ψjt) | ψjt = 13°C/W | θ ja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter **Power Dissipation vs. Ambient Temperature** **Measurement Board Pattern** The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: | Total Hours of Use | Total Years of Use (4 hours/day) | |--------------------|----------------------------------| | 13,000 hours | 9 years | **SOT-89-5 Package Dimensions** The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. #### **Measurement Conditions** | Item | Measurement Conditions | |-------------------------|--| | Environment | Mounting on Board (Wind Velocity = 0 m/s) | | Board Material | Glass Cloth Epoxy Plastic (Four-Layer Board) | | Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm | | | Outer Layer (First Layer): Less than 95% of 50 mm Square | | Copper Ratio | Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square | | | Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square | | Through-holes | φ 0.3 mm × 28 pcs | #### **Measurement Result** $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$ | Item | Measurement Result | |--|--------------------| | Power Dissipation | 2700 mW | | Thermal Resistance (θja) | θja = 37°C/W | | Thermal Characterization Parameter (ψjt) | ψjt = 7°C/W | θ ja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter Power Dissipation vs. Ambient Temperature **Measurement Board Pattern** The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: | Total Hours of Use | Total Years of Use (4 hours/day) | |--------------------|----------------------------------| | 13,000 hours | 9 years | | | | UNIT: mm **HSOP-6J Package Dimensions** The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following measurement conditions are based on JEDEC STD. 51-7. #### **Measurement Conditions** | Item | Measurement Conditions | | |------------------|--|--| | Environment | Mounting on Board (Wind Velocity = 0 m/s) | | | Board Material | Glass Cloth Epoxy Plastic (Four-Layer Board) | | | Board Dimensions | 76.2 mm × 114.3 mm × 0.8 mm | | | Copper Ratio | Outer Layer (First Layer): Less than 95% of 50 mm Square Inner Layers (Second and Third Layers): Approx. 100% of 50 mm Square Outer Layer (Fourth Layer): Approx. 100% of 50 mm Square | | | Through-holes | φ 0.3 mm × 21 pcs | | | Measurement Result | $(1a = 25^{\circ}C, 1)$ max = $125^{\circ}C)$ | | |--|---|--| | Item | Measurement Result | | | Power Dissipation | 3800 mW | | | Thermal Resistance (θja) | θja = 26°C/W | | | Thermal Characterization Parameter (wit) | uit = 7°C/W | | θja: Junction-to-Ambient Thermal Resistance ψjt: Junction-to-Top Thermal Characterization Parameter **Power Dissipation vs. Ambient Temperature** **Measurement Board Pattern** The above graph shows the power dissipation of the package at Tjmax = 125°C and Tjmax = 150°C. Operating the device in the hatched range might have a negative influence on its lifetime. The total hours of use and the total years of use must be limited as follows: | Total Hours of Use | Total Years of Use (4 hours/day) | |--------------------|----------------------------------| | 13,000 hours | 9 years | TO-252-5-P2 Package Dimensions ^{*} The tab on the bottom of the package shown by blue circle is a substrate potential (GND). It is recommended that this tab be connected to the ground plane on the board but it is possible to leave the tab floating. - 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon. - 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh. - 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein. - 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights. - 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us. - 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products. - 7. Anti-radiation design is not implemented in the products described in this document. - 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage. - 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage. - 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact Ricoh sales or our distributor before attempting - 11. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information. Ricoh is committed to reducing the environmental loading materials in electrical devices with a view to contributing to the protection of human health and the environment. Halogen Free Ricoh has been providing RoHS compliant products since April 1, 2006 and Halogen-free products since April 1, 2012. #### RICOH RICOH ELECTRONIC DEVICES CO., LTD. #### https://www.e-devices.ricoh.co.jp/en/ #### Sales & Support Offices Ricoh Electronic Devices Co., Ltd. Shin-Yokohama Office (International Sales) 2-3, Shin-Yokohama 3-chome, Kohoku-ku, Yokohama-shi, Kanagawa, 222-8530, Japan Phone: +81-50-3814-7687 Fax: +81-45-474-0074 Ricoh Americas Holdings, Inc (way, Suite 200 Campbell, CA 95008, U.S.A. 675 Campbell Technology Park Phone: +1-408-610-3105 Ricoh Europe (Netherlands) B.V. Semiconductor Support Centre Prof. W.H. Keesomlaan 1, 1183 DJ Amstelveen, The Netherlands Phone: +31-20-5474-309 Ricoh International B.V. - German Branch Semiconductor Sales and Support Centre Oberrather Strasse 6, 40472 Düsseldorf, Germany Phone: +49-211-6546-0 Ricoh Electronic Devices Korea Co., Ltd. 3F, Haesung Bldg, 504, Teheran-ro, Gangnam-gu, Seoul, 135-725, Korea Phone: +82-2-2135-5700 Fax: +82-2-2051-5713 Ricoh Electronic Devices Shanghai Co., Ltd. Room 403, No.2 Building, No.690 Bibo Road, Pu Dong New District, Shanghai 201203, People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299 Ricoh Electronic Devices Shanghai Co., Ltd. Shenzhen Branch 1205, Block D(Jinlong Building), Kingkey 100, Hongbao Road, Luohu District, Shenzhen, China Phone: +86-755-8348-7600 Ext 225 Ricoh Electronic Devices Co., Ltd. **Taipei office**Room 109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623 Downloaded from Arrow.com.