

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http: //www.microsemi.com

ELECTRICAL CHARACTERISTICS ($T_A = +25^{\circ}C$, unless otherwise noted)

Parameters / Test Conditions		Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (1)					
Forward-Current Transfer Ratio $I_C = 0.1 \text{mAdc}, V_{CE} = 10 \text{Vdc}$ $I_C = 1.0 \text{mAdc}, V_{CE} = 10 \text{Vdc}$ $I_C = 10 \text{mAdc}, V_{CE} = 10 \text{Vdc}$ $I_C = 50 \text{mAdc}, V_{CE} = 10 \text{Vdc}$ $I_C = 150 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N3634, 2N3636	h _{FE}	25 45 50 50 30	150	
$I_{C} = 0.1 \text{mAdc}, V_{CE} = 10 \text{Vdc}$ $I_{C} = 1.0 \text{mAdc}, V_{CE} = 10 \text{Vdc}$ $I_{C} = 10 \text{mAdc}, V_{CE} = 10 \text{Vdc}$ $I_{C} = 50 \text{mAdc}, V_{CE} = 10 \text{Vdc}$ $I_{C} = 150 \text{mAdc}, V_{CE} = 10 \text{Vdc}$	2N3635, 2N3637		55 90 100 100 60	300	
Collector-Emitter Saturation Voltage $I_C = 10$ mAdc, $I_B = 1.0$ mAdc $I_C = 50$ mAdc, $I_B = 5.0$ mAdc		V _{CE(sat)}		0.3 0.6	Vdc
Base-Emitter Saturation Voltage $I_C = 10$ mAdc, $I_B = 1.0$ mAdc $I_C = 50$ mAdc, $I_B = 5.0$ mAdc		V _{BE(sat)}	0.65	0.8 0.9	Vdc

DYNAMIC CHARACTERISTICS

Earward Current Transfer Datio					
Forward Current Transfer Ratio $I_C = 30$ mAdc, $V_{CE} = 30$ Vdc, $f = 100$ MHz	2N3634, 2N3636	$ \mathbf{h}_{\mathrm{fe}} $	1.5	8.0	
	2N3635, 2N3637	11110	2.0	8.5	
Forward Current Transfer Ratio					
$I_{C} = 10 \text{mAdc}, V_{CE} = 10 \text{Vdc}, f = 1.0 \text{kHz}$	2N3634, 2N3636	h_{fe}	40	160	
	2N3635, 2N3637		80	320	
Small-Signal Short-Circuit Input Impedance	e				
$I_{C} = 10 \text{mAdc}, V_{CE} = 10 \text{Vdc}, f = 1.0 \text{kHz}$	2N3634, 2N3636	h _{ie}	100	600	Ω
	2N3635, 2N3637		200	1200	
Small-Signal Open-Circuit Input Impedance	Small-Signal Open-Circuit Input Impedance				
$I_{C} = 10 \text{mAdc}, V_{CE} = 10 \text{Vdc}, f = 1.0 \text{kHz}$		h _{oe}		200	μs
Output Capacitance					
V_{CB} = 20Vdc, I_E = 0, 100 kHz \leq f \leq		C _{obo}		10	pF
1.0MHz					
Input Capacitance					
V_{EB} = 1.0Vdc, I_{C} = 0, 100 kHz $\leq f \leq$		C _{ibo}		75	pF
1.0MHz					
Noise Figure					
$V_{CE} = 10$ Vdc, $I_C = 0.5$ mAdc, $R_g = 1.0$ k Ω	f = 100Hz	NF		5.0	dB
	f = 1.0 kHz			3.0	
	f = 10 kHz			3.0	

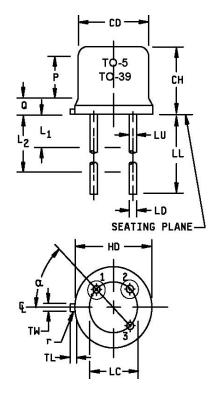
(1) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$

T4-LDS-0065 Rev. 2 (100377)

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

SAFE OPERATING AREA

DC Tests $T_C = 25^{\circ}C$, 1 Cycle, t = 1.0s Test 1 $V_{CE} = 100Vdc$, $I_C = 30mAdc$ $V_{CE} = 130Vdc$, $I_C = 20mAdc$

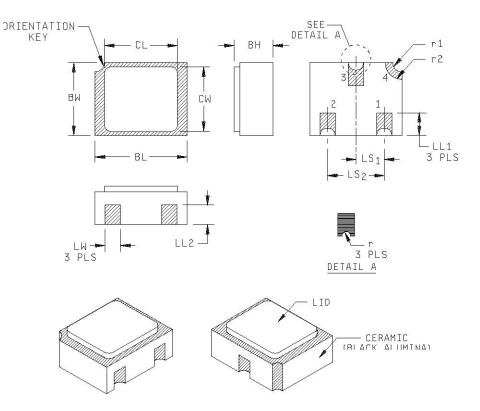

Test 2 $V_{CE} = 50Vdc$, $I_C = 95mAdc$

Test 3 $V_{CE} = 5.0$ Vdc, $I_C = 1.0$ Adc 2N3634, 2N3635 2N3636, 2N3637

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http: //www.microsemi.com

PACKAGE DIMENSIONS

	Dimensions				
Ltr	Inches		Millimeters		Notes
	Min	Max	Min	Max	
CD	.305	.335	7.75	8.51	
СН	.240	.260	6.10	6.60	
HD	.335	.370	8.51	9.40	
LC	.200	.200 TYP		5.08 TYP	
LD	.016	.021	0.41	0.53	6
LL	See notes 7, 9, and 10				
LU	.016	.019	0.41	0.48	7
L1		050		1.27	7
L2	.250		6.35		7
Р	.100		2.54		5
Q		.050		1.27	
r		.010		0.254	8
TL	.029	.045	0.74	1.14	4
TW	.028	.034	0.71	0.86	3
α	45° TP		45° TP		6
Term 1	Emitter				
Term 2	Base				
Term 3	Collector				


NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r maximum, TW must be held to a minimum length of .021 inch (0.53 mm).
- 4. TL measured from maximum HD.
- 5. CD shall not vary more than \pm .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling.
- 6. Leads at gauge plane .054 .055 inch (1.37 1.40 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at a maximum material condition (MMC) relative to the tab at MMC. The device may be measured by direct methods or by gauge and gauging procedure.
- 7. LU applies between L1 and L2. LD applies between L2 and L minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. r (radius) applies to both inside corners of tab.
- 9. For transistor types 2N3634 through 2N3637, LL is .500 inch (12.70 mm) minimum, and .750 inch (19.05 mm) maximum (TO-39).
- 10. For transistor types 2N3634L through 2N3637L, LL is 1.500 inches (38.10 mm) minimum, and 1.750 inches (44.45 mm) maximum (TO-5).
- 11. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

FIGURE 1: Physical dimensions (TO-5 and TO-39)

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Hatched areas on package denote metallized areas.
- 4. Pad 1 = Base, Pad 2 = Emitter, Pad 3 = Collector, Pad 4 = Shielding connected to the lid.
- 5. In accordance with ASME Y14.5M, diameters are. equivalent to φx symbology

Ltr	Inches		Millimeters		Notes
	Min	Max	Min	Max	
BH	.046	.056	1.17	1.42	
BL	.115	.128	2.92	3.25	
BW	.085	.108	2.16	2.74	
CL		.128		3.25	
CW		.108		2.74	
LL1	.022	.038	0.56	0.96	
LL2	.017	.035	0.43	0.89	
LS1	.036	.040	0.91	1.02	
LS2	.071	.079	1.81	2.01	
LW	.016	.024	0.41	0.61	
r		.008		.203	
r1		.012		.305	
r2		.022		.559	

FIGURE 2: Physical dimensions, surface mount 2N3634UB through 2N3637UB (UB version).