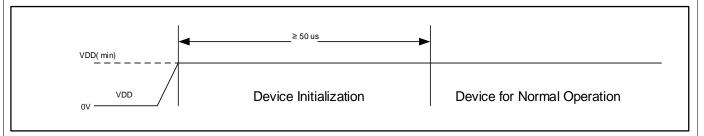


PIN CONFIGURATIONS

48-Ball miniBGA (6mm x 8mm) Ball Assignment

44-pin TSOP (Type II)


PIN DESCRIPTIONS

Symbol	Туре	Description
A0~A18	Input	Address Inputs
I/Q0~I/Q15	Input / Output	Data Inputs/Outputs
CS1#, CS2	Input	Chip Enable
OE#	Input	Output Enable
WE#	Input	Write Enable
UB#	Input	Upper Byte select
LB#	Input	Lower Byte select
VDD	Power Supply	Power
GND	Power Supply	Ground

POWER UP INITIALIZATION

IS66WV51216EALL and IS66/67WV51216EBLL include an on-chip voltage sensor used to launch the power-up initialization process. When VDD reaches a stable level at or above the VDD (min) the device will require 50µs to complete its self-initialization process. During the initialization period, CS1# should remain HIGH. When initialize-ation is complete, the device is ready for normal operation.

TRUTH TABLE

Mode	WE#	CS1#	CS2	OE#	LB#	UB#	I/O0 – I/O7	I/08 – I/015	VDD Current
Not	X	H	X	X	X	H	High-Z	High-Z	ISB1,ISB2
Selected	X	X	L	X	X	X	High-Z	High-Z	ISB1,ISB2
Output	H	L	H	H	L	X	High-Z	High-Z	ICC
Disabled	H		H	H	X	L	High-Z	High-Z	ICC
Read	H H H	L L L	H H H	L L L	L H L	H L L	Douт High-Z Douт	High-Z Dout Dout	Icc Icc
Write	L	L	H	X	L	H	Din	High-Z	Icc
	L	L	H	X	H	L	High-Z	Din	Icc
	L	L	H	X	L	L	Din	Din	Icc

Notes:

CS2 input signal pin is only available for 48-ball mini BGA package part. CS2 input is internally enabled for 44-pin TSOP II package part.

OPERATING RANGE (VDD)

Range	Ambient Temperature	IS66WV51216EALL (70ns)	IS66WV51216EBLL (55ns, 70ns)	IS66WV51216EBLL (55ns, 70ns)
Industrial	–40°C to +85°C	1.7V – 1.95V	2.5V – 3.6V	_
Automotive , A1	–40°C to +85°C	-	-	2.5V – 3.6V
Automotive , A2	–40°C to +105°C	_	_	2.5V – 3.6V

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.2 to VDD + 0.3	V
TBIAS	Temperature Under BIAS	-40 to +85	°C
Vdd	VDD Related to GND	-0.2 to +3.8	V
Tstg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W

Notes:

Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

VDD = 2.5V-3.6V (IS66/67WV51216EBLL)

Symbol	Parameter	Test Conditions	Vdd	Min.	Max.	Unit
Vон	Output HIGH Voltage	I _{он} = -1 mA	2.5-3.6V	2.2	—	V
Vol	Output LOW Voltage	IoL = 2.1 mA	2.5-3.6V	—	0.4	V
Viн	Input HIGH Voltage(1)		2.5-3.6V	2.2	Vdd + 0.3	V
Vi∟	Input LOW Voltage(1)		2.5-3.6V	-0.2	0.6	V
lu	Input Leakage	$GND \leq V_{IN} \leq V_{DD}$		-1	1	μA
ILo	Output Leakage	GND ≤ Vou⊤ ≤ Outputs Disab		_1	1	μA

Notes:

1. VILL (min.) = -2.0 VAC (pulse width < 10ns). Not 100% tested.

VIHH (max.) = VDD + 2.0V AC (pulse width < 10ns). Not 100% test

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

VDD = 1.7V-1.95V(IS66WV51216EALL)

Symbol	Parameter	Test Conditions	Vdd	Min.	Max	Unit
Vон	Output HIGH Voltage	Іон = -0.1 mA	1.7-1.95V	1.4	—	V
Vol	Output LOw Voltage	IoL = 0.1 mA	1.7-1.95V	_	0.2	V
Vih	Input HIGH Voltage(1)		1.7-1.95V	1.4	VDD + 0.2	V
Vil	Input LOw Voltage(1)		1.7-1.95V	-0.2	0.4	V
Ili	Input Leakage	$GND \le V_{IN} \le V$	/DD	-1	1	μA
ILo	Output Leakage	$GND \leq VOUT \leq VDD$, Outputs Disabled		-1	1	μA

Notes:

1. VILL (min.) = -1.0V AC (pulse width < 10ns). Not 100% tested. VIHH (max.) = VDD + 1.0V AC (pulse width < 10ns). Not 100% test

CAPACITANCE

Sym	bol	Description	Conditions	MIN	MAX	Unit
CI	N	Input Capacitance	VIN = 0V	-	8	pF
CI	0	Input/Output Capacitance (DQ)	Vout = 0V	-	10	pF

Notes:

1. Tested initially and after any design or process changes that may affect these parameters.

ACTEST CONDITIONS

Parameter	1.7V – 1.95V (Unit)	2.5V – 3.6V (Unit)
Input Pulse Level	0.4V to VDD - 0.2V	0.4V to VDD – 0.3V
Input Rise and Fall Time	5ns	5ns
Input and Output Timing and Reference Level	Vref	Vref
Output Load	See Figures 1 and 2	See Figures 1 and 2

Symbol	1.7V – 1.95V	2.5V – 3.6V	
R1(Ω)	3070	1029	
R2(Ω)	3150	1728	
VREF	0.9V	1.4V	
Vтм	1.8V	2.8V	

AC TEST LOADS

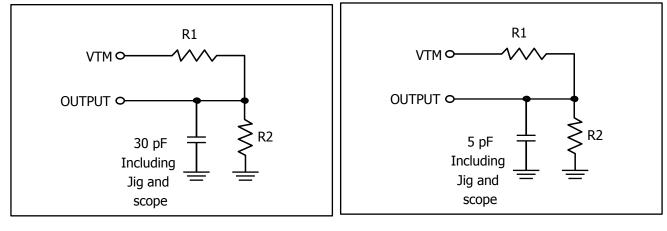


Figure 1

Figure 2

Symbol	Parameter	Conditions	Device	TYP.	MAX. 70ns	Unit
Icc	VDD Dynamic Operating Supply Current	V _{DD} =Max.,I _{OUT} =0mA, f=f _{MAX} , All inputs = 0.4V or VDD - 0.2V	Com. Ind. Auto	- -	20 25 30	mA
Icc1	Operating Supply Current	V _{DD} =Max.,CS1#=0.2V, WE#= V _{DD} – 0.2V, f=1мнz	Com. Ind. Auto	- - -	8 8 10	mA
ISB1	TTL Standby Current (TTL Inputs)	$V_{DD}=Max.,V_{IN}=V_{IH} \text{ or } V_{IL},$ $CS1\# = V_{IH}, CS2=V_{IL},$ $f=1_{MHz}$	Com. Ind. Auto	- -	0.6 0.6 1	mA
Isb2	CMOS Standby Current (CMOS Inputs)	$\label{eq:VDD} \begin{split} V_{DD} = & \text{Max.}, \\ & \text{CS1} \# \geq V_{DD} - 0.2V, \\ & \text{CS2} \leq 0.2V, \ V_{\text{IN}} > V_{DD} - 0.2V \\ & \text{or} \ \ V_{\text{IN}} < 0.2V, \ f=0 \end{split}$	Com. Ind. Auto	- - -	100 120 150	uA

Notes:

1. At $f = f_{MX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

2.5V-3.6V POWER SUPPLY CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Conditions	Device	ТҮР	MAX 55ns	Unit
Icc	VDD Dynamic Operating Supply Current	V _{DD} =Max.,I _{OUT} =0mA, f=f _{MAX} , All inputs = 0.4V or V _{DD} - 0.3V	Com. Ind. Auto Typ.(2)	- -	25 28 35 15	mA
Icc1	Operating Supply Current	V _{DD} =Max.,CS1#=0.2V, WE#= V _{DD} – 0.2V, f=1 _{MHz}	Com. Ind. Auto	- - -	8 8 10	mA
Isb1	TTL Standby Current (TTL Inputs)	$V_{DD}=Max.,V_{IN}=V_{IH} \text{ or } V_{IL},$ $CS1\# = V_{IH}, CS2=V_{IL},$ $f=1M_{Hz}$	Com. Ind. Auto	- -	0.6 0.6 1	mA
Isb2	CMOS Standby Current (CMOS Inputs)	$\label{eq:VDD} \begin{split} V_{\text{DD}} = & \text{Max.}, \\ & \text{CS1} \# \geq V_{\text{DD}} - 0.2V, \\ & \text{CS2} \leq 0.2V, \ V_{\text{IN}} > V_{\text{DD}} - 0.2V \\ & \text{or} V_{\text{IN}} < 0.2V \ , f = 0 \end{split}$	Com. Ind. Auto Typ. ⁽²⁾	- -	100 130 150 75	uA

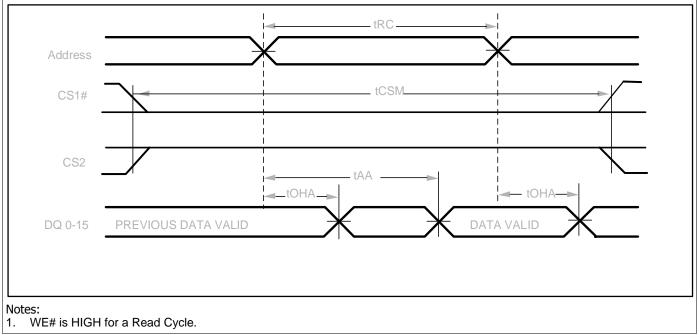
Notes:

1. At f=fMAX, address and data inputs are cycling at the maximum frequency , f = 0 means no input lines change.

2. Typical values are measured at $V_{DD} = 3.0V$, Ta = 25 °C , and not 100% tested.

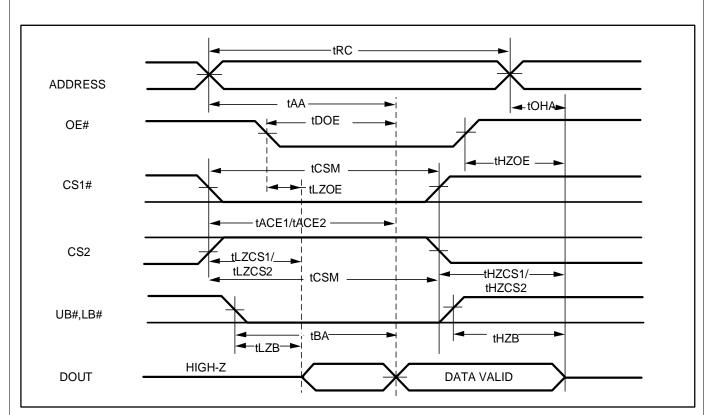
READ CYCLE SWITCHING CHARACTERISTICS ⁽¹⁾ (Over Operating Range)							
Symbol	Parameter	-55		-70		Unit	Notes
	Falametei	Min	Мах	Min Max			Notes
t _{RC}	Read cycle time		-	70	-	ns	
t _{AA}	Address Acess Time		60	-	70	ns	1
t _{oha}	Output Hold Time	10	-	10	-	ns	
t _{ACS1/ACS2}	2 CS1#/CS2 Acess Time		60	-	70	ns	
t _{DOE}	DOE OE# Access Time		25	-	35	ns	1
t _{HZOE}	HZOE OE# to High-Z output		20	-	25	ns	2
t _{LZOE}	OE# to Low-Z output	5	-	5	-	ns	2
t _{csm}	C _{CSM} Maximum CS1#/CS2 pulse width		15	-	15	us	
t _{HZCS1/HZCS2}	t _{HZCS1/HZCS2} CS1#/CS2 to High-Z output		20	0	25	ns	2
t _{LZCS1/HZCS2}	t _{LZCS1/HZCS2} CS1#/CS2 to Low-Z output		-	10	-	ns	2
t _{BA}	UB#/LB# Acess Time	-	60	-	70	ns	1
t _{HZB}	t _{HZB} UB#/LB# to High-Z output		20	0	25	ns	2
t _{LZB}	UB#/LB# to Low-Z output	0	-	0	-	ns	2
t _{CPH}	t _{CPH} CS1# HIGH (CS2 LOW) time		-	5	-	ns	

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾(Over Operating Range)


Notes:

1. Test conditions and output loading are specified in the AC Test Conditions and AC Test Loads (Figure 1) on page 5.

2. Tested with the load in Figure 2. Transition is measured ± 100 mV from steady-state voltage. Not 100% tested.


AC WAVEFORMS

READ CYCLE NO. 1⁽¹⁾ (Address Controlled, OE#= VIL, WE#=VIH, UB# or LB# = VIL)

READ CYCLE NO. 2⁽¹⁾ (CS1#, CS2, OE# and UB#/LB# Controlled)

Notes:

1. Address is valid prior to or coincident with CS1# LOW (CS2 HIGH) transition, and is valid after or coincident with CS1# HI GH (CS2 LOW) transition.

-				_		-	-
Symbol	Parameter	-55		-70		Unit	Notoc
	Falance	Min	Мах	Min	Max	Unit	Notes
t _{wc}	Write Cycle Time	55	55 - 70 - ns				
t _{SCS1/SCS2}	CS1#/CS2 to Write End	45	-	60	-	ns	
t _{CSM}	Maximum CS1#/CS2 pulse width		15	-	15	us	
t _{AW}	Address Setup to Write Time		-	60	-	ns	
t _{HA}	Address Hold to End of Write		-	0	-	ns	
t _{sa}	Address Setup Time		-	0	-	ns	
t _{PWB}	UB#/LB# Valid to End of Write		-	60	-	ns	
t _{PWE}	WE# Pulse Width		-	60	-	ns	
t _{sD}	Data Setup Time	25	-	30	-	ns	
t _{HZWE}	WE# LOW to High-Z output	-	20	-	30	ns	3
t _{LZWE}	WE# HIGH to Low-Z output	5	-	5	-	ns	3
t _{CPH}	CS1# HIGH (CS2 LOW) time	5	-	5	-	ns	

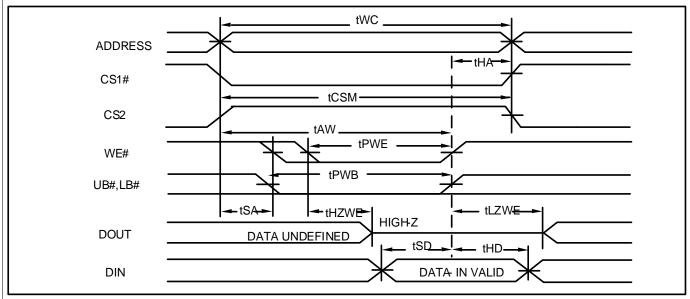
WRITE CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

Notes:

1. Test conditions and output loading are specified in the AC Test Conditions and AC Test Loads (Figure 1) on page 5.

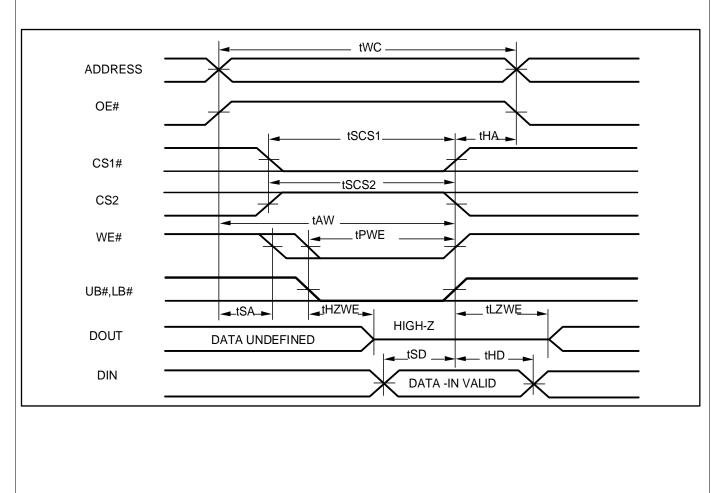
2. The internal write time is defined by the overlap of CS1#, UB#, LB# and WE# LOW, CS2 HIGH . All signals must be in valid states to initiate a Write, but anyone can go inactive to terminate Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signals that terminates the Write.

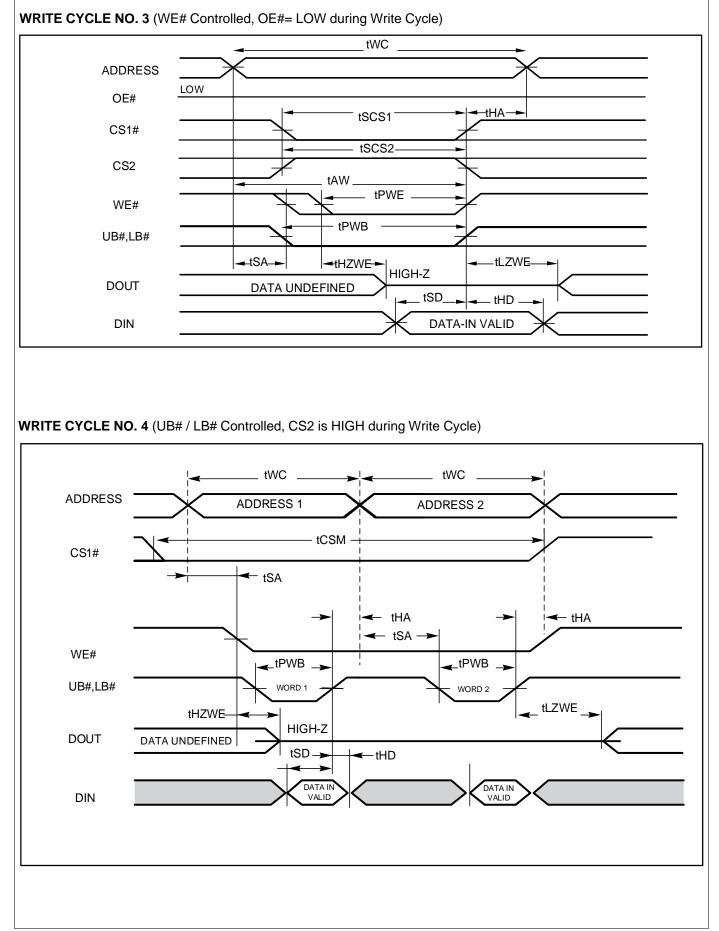
3. Tested with the load in Figure 2. Transition is measured ±100 mV from steady-state voltage. Not 100% tested.

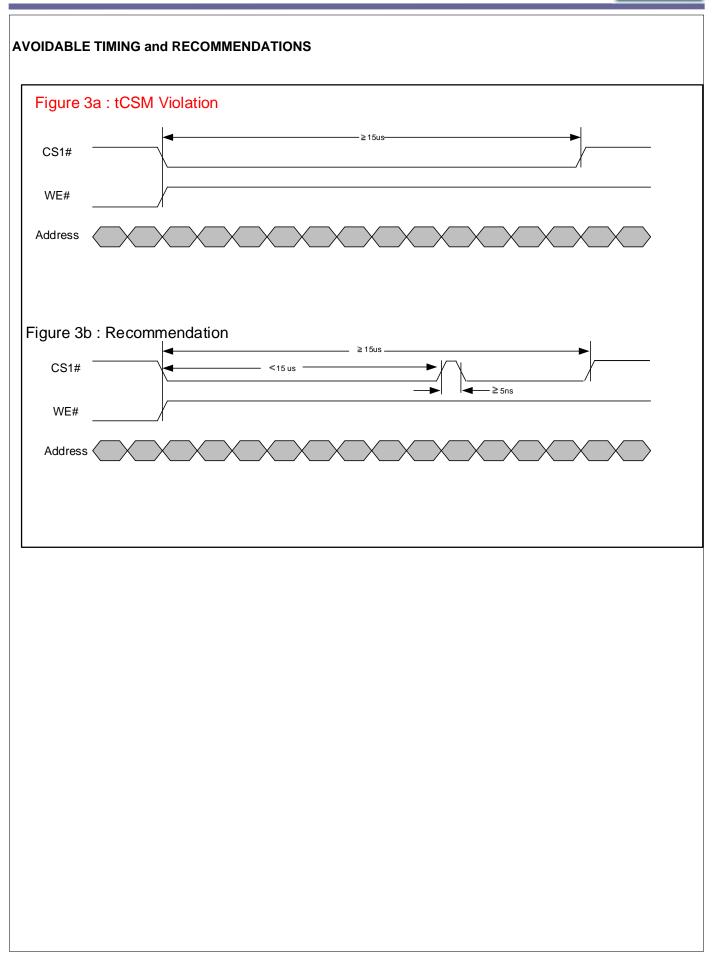

4. tPWE > tHzWE + tsp when OE# is LOW.

5. Chip Select Active Time (both CS1# LOW and CS2 HIGH) must not be longer than tCMS of 15 us.

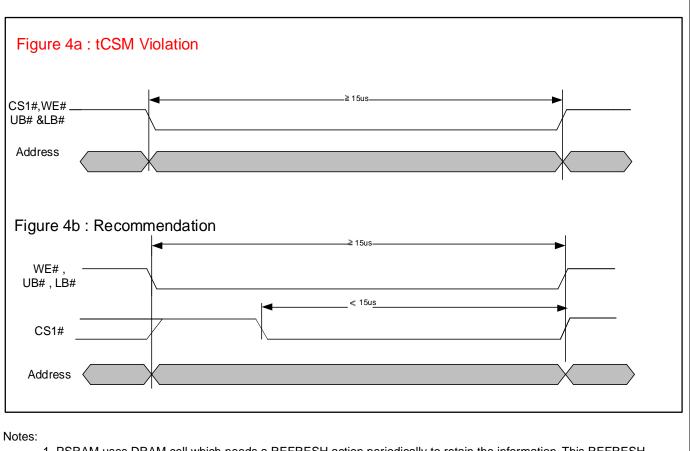
AC WAVEFORMS


WRITE CYCLE NO. 1⁽¹⁾ (CS1# Controlled, OE#= HIGH or LOW)


Notes:


 Write address is valid prior to or coincident with CS1# LOW (CS2 HIGH) transition, and is valid after or coincident with C S1# HIGH (CS2 LOW) transition.

WRITE CYCLE NO. 2 (WE# Controlled, OE#= HIGH during Write Cycle)



AVOIDABLE TIMING and RECOMMENDATIONS

- 1. PSRAM uses DRAM cell which needs a REFRESH action periodically to retain the information. This REFRESH action is performed only when the device is not selected (Chip Select Pins are Disabled). A hidden REFRESH action has to be executed by the device at least once every 15 µs of tCSM.
- Figure 3a shows a timing example in which consecutive READ cycles for more than 15 us. This timing should be avoided for proper REFRESH operation. REFRESH operation can begin only during Chip Select pins are Disabled (CS1# is High and CS2 is Low) for more than 5ns. Example on how to avoid tCSM violation in Figure 3a is shown in Figure 3b.
- 3. Figure 4a shows a timing example in which a single WRITE operation is maintained for a period greater than 15 µs. Since a proper REFRESH action cannot be performed during device is selected by Chip Select pins, information stored in the device will not be retained if this timing occurs.

Figure 4b is a timing example of using CS1# signal toggling for proper the WRITE operation

IS66WV51216EALL

Industrial Temperature Range: (-40°C to +85°C) Voltage Range : 1.7V to 1.95V

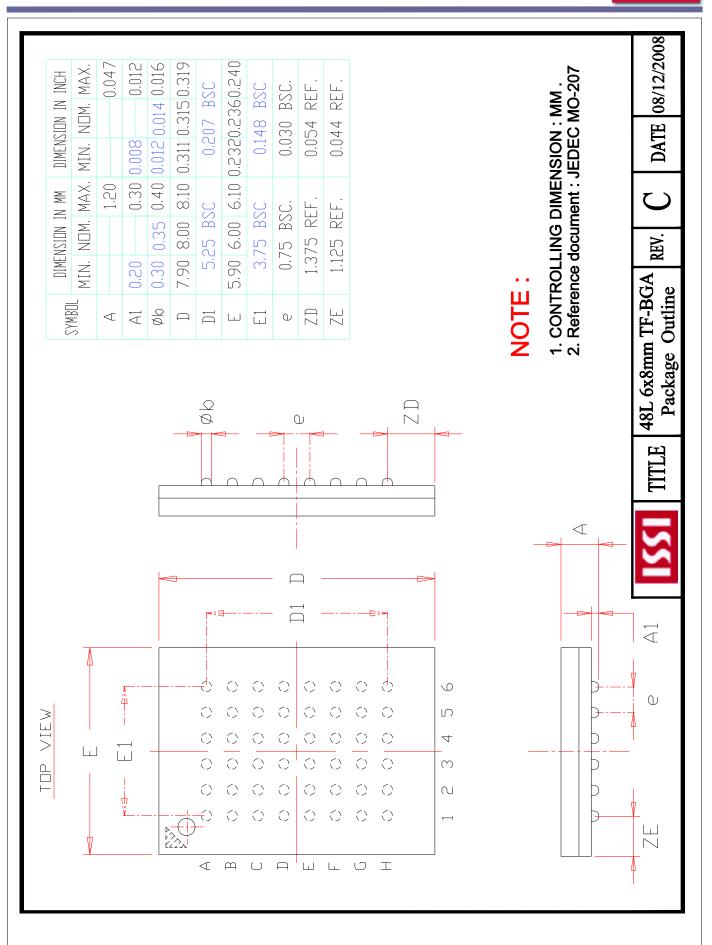
Config.	Speed (ns)	Order Part No.	Package
512K x16	70	IS66WV51216EALL-70TLI	TSOP-II, Lead-free
		IS66WV51216EALL-70BLI	mini BGA(6mm x 8mm), Lead-free

IS66WV51216EBLL

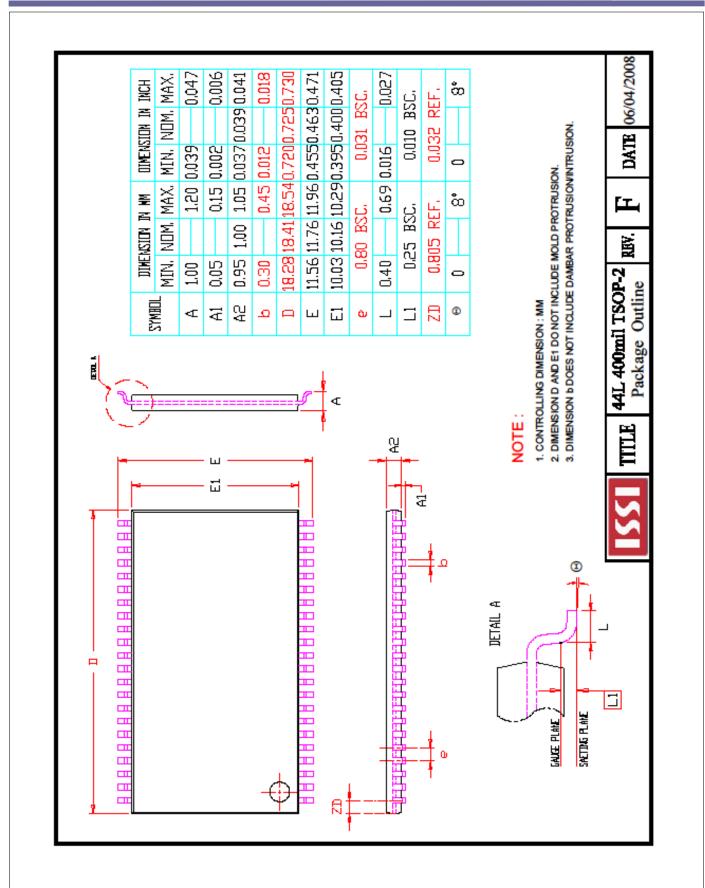
Industrial Temperature Range: (-40°C to +85°C) Voltage Range : 2.5V to 3.6V

Config.	Speed (ns)	Order Part No.	Package
512K x16	55	IS66WV51216EBLL-55TLI IS66WV51216EBLL-55BLI	TSOP-II, Lead-free mini BGA(6mm x 8mm), Lead-free
	70	IS66WV51216EBLL-70TLI IS66WV51216EBLL-70BLI	TSOP-II, Lead-free mini BGA(6mm x 8mm), Lead-free

IS67WV51216EBLL


Automotive (A1) Temperature Range: (-40°C to +85°C) Voltage Range : 2.5V to 3.6V

Config.	Speed (ns)	Order Part No.	Package
512K x16	55	IS67WV51216EBLL-55TLA1 IS67WV51216EBLL-55BLA1	TSOP-II, Lead-free mini BGA(6mm x 8mm), Lead-free
	70	IS67WV51216EBLL-70TLA1 IS67WV51216EBLL-70BLA1	TSOP-II, Lead-free mini BGA(6mm x 8mm), Lead-free


Notes :

1. Please contact ISSI SRAM marketing at sram@issi.com if you need -40 °C to +105 °C product.

L L

Rev. B I 10/14/2015 Downloaded from Arrow.com.

55

Π