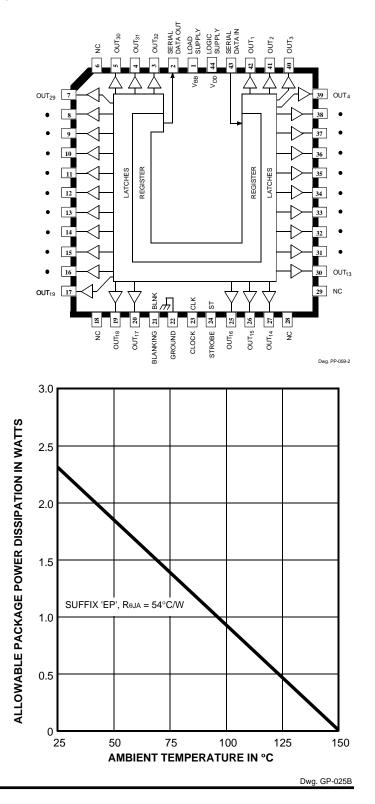

TYPICAL INPUT CIRCUIT

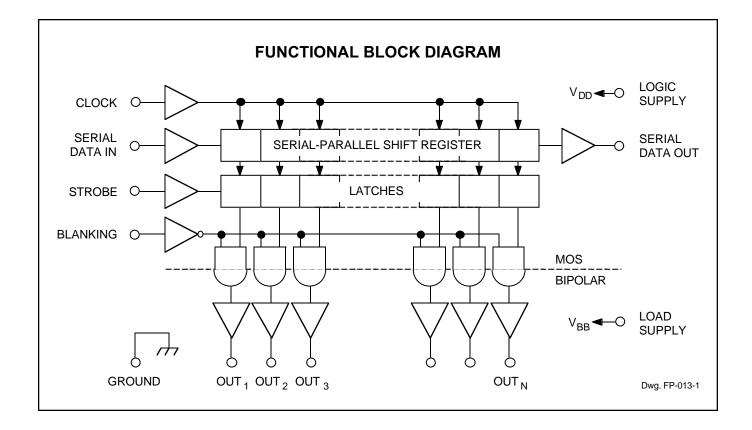
TYPICAL OUTPUT DRIVER


Dwg. EP-021-19

V_{BB}

OUTN

h


A6818xEP

croSystems, Inc.

115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000 Copyright © 1998, 2003 Allegro MicroSystems, Inc.

Downloaded from Arrow.com.

	Clock	Shift Register Contents				Serial		Latch Contents					Output Contents									
			I ₂	I ₃		I _{N-1}	I _N	Data Output	Strobe Input	I ₁	I ₂	I ₃		I _{N-1}	I _N	Blanking	Ι ₁	l ₂	I ₃		I _{N-1}	I _N
н	Ъ	н	R ₁	R ₂		R _{N-2}	R _{N-1}	R _{N-1}														
L	Ч	L	R ₁	R_2		R _{N-2}	R _{N-1}	R _{N-1}														
х	l	R ₁	R_2	R_3		R _{N-1}	R _N	R _N														
		х	Х	Х		Х	Х	х	L	R ₁	R_2	R_3		R _{N-1}	R_N							
		Р ₁	P_2	P_3		P _{N-1}	P _N	P _N	Н	P ₁	P ₂	P_3		P _{N-1}	P _N	L	Р ₁	P ₂	P_3		P _{N-1}	P _N
										Х	Х	Х		Х	Х	Н	L	L	L		L	L

TRUTH TABLE

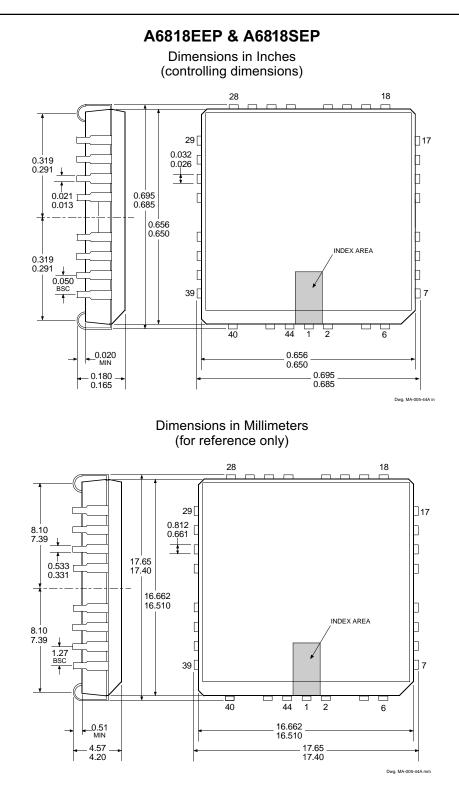
L = Low Logic Level H = High Logic Level X = Irrelevant P = Present State R = Previous State

ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$ (A6818S-) or over operating temperature range (A6818E- and A6818K-), $V_{BB} = 60$ V unless otherwise noted.

			Limits	@ V _{DD}	= 3.3 V	Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Units
Output Leakage Current	I _{CEX}	V _{OUT} = 0 V	—	<-0.1	-15	—	<-0.1	-15	μA
Output Voltage	V _{OUT(1)}	I _{OUT} = -25 mA	57.5	58.3	_	57.5	58.3	_	V
	V _{OUT(0)}	I _{OUT} = 1 mA	—	1.0	1.5	—	1.0	1.5	V
Output Pull-Down Current	I _{OUT(0)}	$V_{OUT} = 5 V \text{ to } V_{BB}$	2.5	5.0	_	2.5	5.0	_	mA
Input Voltage	V _{IN(1)}		2.2	—	_	3.3	_	_	V
	V _{IN(0)}		-		1.1	—	_	1.7	V
Input Current	I _{IN(1)}	$V_{IN} = V_{DD}$	—	<0.01	1.0	—	<0.01	1.0	μA
	I _{IN(0)}	V _{IN} = 0.8 V	_	<-0.01	-1.0	—	<-0.01	-1.0	μA
Input Clamp Voltage	V _{IK}	I _{IN} = -200 μA	—	-0.8	-1.5	—	-0.8	-1.5	V
Serial Data Output Voltage	V _{OUT(1)}	I _{OUT} = -200 μA	2.8	3.05	_	4.5	4.75		V
	V _{OUT(0)}	I _{OUT} = 200 μA	-	0.15	0.3	—	0.15	0.3	V
Maximum Clock Frequency	f _c		10	33	_	10	33		MHz
Logic Supply Current	I _{DD(1)}	All Outputs High	—	0.25	0.75	—	0.3	1.0	mA
	I _{DD(0)}	All Outputs Low	-	0.25	0.75	—	0.3	1.0	mA
Load Supply Current	I _{BB(1)}	All Outputs High, No Load	—	4.5	9.0	—	4.5	9.0	mA
	I _{BB(0)}	All Outputs Low	-	0.2	20	—	0.2	20	μΑ
Blanking-to-Output Delay	t _{dis(BQ)}	C _L = 30 pF, 50% to 50%	—	0.7	2.0	—	0.7	2.0	μs
	t _{en(BQ)}	C _L = 30 pF, 50% to 50%	-	1.8	3.0	—	1.8	3.0	μs
Strobe-to-Output Delay	t _{p(STH-QL)}	R_L = 2.3 k Ω , $C_L \le$ 30 pF	—	0.7	2.0	—	0.7	2.0	μs
	t _{p(STH-QH)}	R_L = 2.3 k Ω , $C_L \le$ 30 pF	_	1.8	3.0	—	1.8	3.0	μs
Output Fall Time	t _f	R_L = 2.3 k Ω , $C_L \le$ 30 pF	2.4	_	12	2.4	_	12	μs
Output Rise Time	t _r	R_L = 2.3 k Ω , $C_L \le$ 30 pF	2.4	_	12	2.4	_	12	μs
Output Slew Rate	dV/dt	R_L = 2.3 k Ω , $C_L \le 30 \text{ pF}$	4.0	_	20	4.0		20	V/µs
Clock-to-Serial Data Out Delay	t _{p(CH-SQX)}	I _{OUT} = ±200 μA	_	50	_	_	50		ns

Negative current is defined as coming out of (sourcing) the specified device terminal.

Typical data is is for design information only and is at $T_A = +25^{\circ}C$.



A. Data Active Time Before Clock Pulse

Serial Data present at the input is transferred to the shift register on the logic "0" to logic "1" transition of the CLOCK input pulse. On succeeding CLOCK pulses, the registers shift data information towards the SERIAL DATA OUTPUT. The SERIAL DATA must appear at the input prior to the rising edge of the CLOCK input waveform. Information present at any register is transferred to the respective latch when the STROBE is high (serial-to-parallel conversion). The latches will continue to accept new data as long as the STROBE is held high. Applications where the latches are bypassed (STROBE tied high) will require that the BLANKING input be high during serial data entry.

When the BLANKING input is high, the output source drivers are disabled (OFF); the pnp active pull-down sink drivers are ON. The information stored in the latches is not affected by the BLANKING input. With the BLANKING input low, the outputs are controlled by the state of their respective latches.

www.allegromicro.com

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown. 2. Lead spacing tolerance is non-cumulative.

www.allegromicro.com

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

115 Northeast Cutoff, Box 15036 Worcester, Massachusetts 01615-0036 (508) 853-5000