

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, steel base, nickel cap
- TERMINALS: Steel Leads, nickel plated, then solder dipped or RoHS compliant matte-tin available on commercial grade only
- MARKING: Part number, date code, manufacturer's ID and serial number
- POLARITY: PNP
- WEIGHT: Approximately 1.064 grams
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

SYMBOLS & DEFINITIONS					
Symbol	Definition				
Ι _Β	Base current: The value of the dc current into the base terminal.				
Ι _C	Collector current: The value of the dc current into the collector terminal.				
Ι _Ε	Emitter current: The value of the dc current into the emitter terminal.				
T _c	Case temperature: The temperature measured at a specified location on the case of a device.				
V _{CB}	Collector-base voltage: The dc voltage between the collector and the base.				
V _{CBO}	Collector-base voltage, base open: The voltage between the collector and base terminals when the emitter terminal is open-circuited.				
V _{cc}	Collector-supply voltage: The supply voltage applied to a circuit connected to the collector.				
V _{CE}	Collector-emitter voltage: The dc voltage between the collector and the emitter.				
V _{CEO}	Collector-emitter voltage, base open: The voltage between the collector and the emitter terminals when the base terminal is open-circuited.				
V _{EB}	Emitter-base voltage: The dc voltage between the emitter and the base				
V _{EBO}	Emitter-base voltage, collector open: The voltage between the emitter and base terminals with the collector terminal open-circuited.				

ELECTRICAL CHARACTERISTICS @ $T_A = -$	+25 °C, unless otherwise noted
--	--------------------------------

Characteristics	Symbol	Min	Max	Unit	
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
I _C = -100 mA	2N4234 2N4235 2N4236	$V_{(BR)CEO}$	-40 -60 -80		V
Collector-Emitter Cutoff Current					
$V_{CB} = -30 \text{ V}$	2N4234	I _{CEO}		-1.0	mA
$V_{CB} = -40 \text{ V}$	2N4235			-1.0	
$V_{CB} = -60 V$	2N4236			-1.0	
Collector-Emitter Cutoff Current					
V _{CB} = -40 V, V _{BE} = -1.5 V	2N4234	I _{CEX}		-100	nA
$V_{CB} = -60 \text{ V}, \text{ V}_{BE} = -1.5 \text{ V}$	2N4235			-100	
$V_{CB} = -80 \text{ V}, \text{ V}_{BE} = -1.5 \text{ V}$	2N4236			-100	
Collector-Base Cutoff Current					
$V_{CB} = -40 V$	2N4234	I _{CBO}		-100	nA
$V_{CB} = -60 V$	2N4235			-100	
$V_{CB} = -80 \text{ V}$	2N4236			-100	
Emitter-Base Cutoff Current $V_{BE} = -7.0 V$		I _{EBO}		-0.5	mA

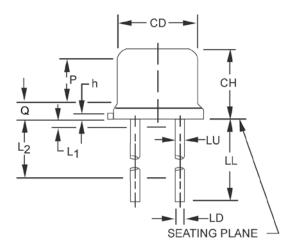
ON CHARACTERISTICS (3)

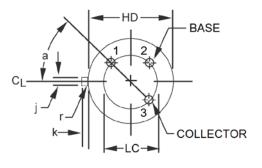
Forward-Current Transfer Ratio $I_{C} = -100 \text{ mA}, V_{CE} = -1.0 \text{ V}$ $I_{C} = -250 \text{ mA}, V_{CE} = -1.0 \text{ V}$ $I_{C} = -500 \text{ mA}, V_{CE} = -1.0 \text{ V}$	h _{FE}	40 30 20	150	
Collector-Emitter Saturation Voltage $I_{C} = -1.0 \text{ A}, I_{B} = -100 \text{ mA}$ $I_{C} = -500 \text{ mA}, I_{B} = -50 \text{ mA}$	$V_{CE(sat)}$		-0.6 -0.4	V
Base-Emitter Saturation Voltage $I_{C} = -500 \text{ mA}, I_{B} = -50 \text{ mA}$ $I_{C} = -1.0 \text{ A}, I_{B} = -100 \text{ mA}$	$V_{BE(sat)}$		-1.1 -1.5	V

DYNAMIC CHARACTERISTICS

Magnitude of Common Emitter Small-Signal Short-Circuit Forward Current Transfer Ratio I_{C} = -100 mA, V_{CE} = -10 V, f = 1 MHz	h _{FE}	3.0		
Output Capacitance V_{CB} = -10 V, I _E = 0, f = 100 MHz	C _{obo}		100	pF

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)


SAFE OPERATING AREA


 $\begin{array}{l} \textbf{DC Tests} \\ T_{C} = +25 \ ^{\circ}\text{C}, \ 1 \ \text{cycle}, \ t \geq 0.5 \ \text{s} \\ \hline \textbf{Test 1} \\ V_{CE} = -6.0 \ \text{V}, \ I_{C} = -1.0 \ \text{A} \\ \hline \textbf{Test 2} \\ V_{CE} = -12 \ \text{V}, \ I_{C} = -500 \ \text{mA} \\ \hline \textbf{Test 3} \\ V_{CE} = -30 \ \text{V}, \ I_{C} = -166 \ \text{mA} \quad (2N4234) \\ V_{CE} = -50 \ \text{V}, \ I_{C} = -100 \ \text{mA} \quad (2N4235) \\ V_{CE} = -70 \ \text{V}, \ I_{C} = -71 \ \text{mA} \quad (2N4236) \end{array}$

(3) Pulse Test: Pulse Width = 300 μ s, duty cycle ≤ 2.0%

PACKAGE DIMENSIONS

Ltr	Inch		Millin	neters	Notes	
	Min	Max	Min	Max		
CD	0.305	0.335	7.75	8.51		
СН	0.240	0.260	6.10	6.60		
HD	0.335	0.370	8.51	9.40		
h	0.009	0.041	0.23	1.04		
j	0.028	0.034	0.71	0.86	3	
k	0.029	0.045	0.74	1.14	3, 4	
LD	0.016	0.021	0.41	0.53	8, 9	
LL	0.500	0.750	12.7	19.05		
LC	0.200 TP		5.08 TP		7	
LU	0.016	0.019	0.41	0.48	8, 9	
L1	-	0.050	-	1.27	8, 9	
L2	0.250	-	6.35	-	8, 9	
Р	0.100	-	2.54	-	7	
Q	-	0.050	-	1.27	5	
r	-	0.010	-	0.25	10	
α	45° TP		45° TP		7	

NOTES:

- Dimensions are in inches. 1.
- Millimeters are given for information only. 2.
- 3. Beyond r (radius) maximum, TL shall be held for a minimum length of 0.011 inch (0.28 mm).
- Dimension TL measured from maximum HD. 4.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6.
- CD shall not vary more than .010 inch (0.25 mm) in zone P. This zone is controlled for automatic handling. Leads at gauge plane 0.054 +0.001 -0.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within 0.007 inch (0.18 7. mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 8. and beyond LL minimum.
- 9. All three leads.
- 10. The collector shall be internally connected to the case.
- 11. Dimension r (radius) applies to both inside corners of tab.
- 12. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 13. Lead 1 = emitter, lead 2 = base, lead 3 = collector.