Contents VND7012AY-E

Contents

1	Bloc	k diagram and pin description					
2	Elec	lectrical specification					
	2.1	Absolute maximum ratings					
	2.2	Thermal data 9					
	2.3	Main electrical characteristics 10					
	2.4	Electrical characteristics curves					
3	Prot	ections					
	3.1	Power limitation					
	3.2	Thermal shutdown					
	3.3	Current limitation					
	3.4	Negative voltage clamp 26					
4	Арр	lication information					
	4.1	GND protection network against reverse battery					
	4.2	Immunity against transient electrical disturbances					
	4.3	MCU I/Os protection					
	4.4	MultiSense - analog current sense					
		4.4.1 Principle of MultiSense signal generation					
		4.4.2 T _{CASE} and V _{CC} monitor					
		4.4.3 Short to VCC and OFF-state open-load detection					
	4.5	Maximum demagnetization energy (V _{CC} = 16 V)					
5	Pacl	kage and PCB thermal data					
	5.1	PowerSSO-36 thermal data					
6	Pacl	kage information					
	6.1	ECOPACK [®] 40					
	6.2	PowerSSO-36 mechanical data					
	6.3	Packing information					
7	Orde	er codes 43					

VND7012AY-E		Contents
8	Revision history	A
X	RAVISION NISTORV	4.

List of tables VND7012AY-E

List of tables

Table 1.	Pin functions	6
Table 2.	Suggested connections for unused and not connected pins	
Table 3.	Absolute maximum ratings	
Table 4.	Thermal data	9
Table 5.	Power section	10
Table 6.	Switching ($V_{CC} = 13 \text{ V}$; -40 °C < T_i < 150 °C, unless otherwise specified)	11
Table 7.	Logic Inputs (7 V < V _{CC} < 28 V; -40°C < T _i < 150°C)	
Table 8.	Protections (7 V < V _{CC} < 18 V; -40°C < T _i < 150°C)	
Table 9.	MultiSense (7 V < V _{CC} < 18 V; -40°C < T _i < 150°C)	
Table 10.	Truth table	21
Table 11.	MultiSense multiplexer addressing	21
Table 12.	ISO 7637-2 - electrical transient conduction along supply line	28
Table 13.	MultiSense pin levels in off-state	33
Table 14.	PCB properties	37
Table 15.	Thermal parameters	39
Table 16.	PowerSSO-36 mechanical data	41
Table 17.	Device summary	43
Table 18	Document revision history	44

VND7012AY-E List of figures

List of figures

Figure 1.	Block diagram	6
Figure 2.	Configuration diagram (top view)	7
Figure 3.	Current and voltage conventions	8
Figure 4.	I _{OUT} /I _{SENSE} vs. I _{OUT}	18
Figure 5.	Current sense precision vs. I _{OUT}	18
Figure 6.	Switching times and Pulse skew	
Figure 7.	MultiSense timings (current sense mode)	19
Figure 8.	MultiSense timings (chip temperature and VCC sense mode)	20
Figure 9.	T _{DSKON}	20
Figure 10.	OFF-state output current	22
Figure 11.	Standby current	22
Figure 12.	I _{GND(ON)} vs. I _{out}	22
Figure 13.	Logic Input high level voltage	
Figure 14.	Logic Input low level voltage	22
Figure 15.	High level logic input current	22
Figure 16.	Low level logic input current	23
Figure 17.	Logic Input hysteresis voltage	23
Figure 18.	FaultRST Input clamp voltage	23
Figure 19.	Undervoltage shutdown	23
Figure 20.	On-state resistance vs. T _{case}	23
Figure 21.	On-state resistance vs. V _{CC}	23
Figure 22.	Turn-on voltage slope	24
Figure 23.	Turn-off voltage slope	24
Figure 24.	Won vs. T _{case}	24
Figure 25.	Woff vs. T _{case}	24
Figure 26.	I _{LIMH} vs. T _{case}	24
Figure 27.	OFF-state open-load voltage detection threshold	
Figure 28.	V _{sense} clamp vs. T _{case}	25
Figure 29.	V _{senseh} vs. T _{case}	25
Figure 30.	Application diagram	
Figure 31.	Simplified internal structure	27
Figure 32.	MultiSense and diagnostic – block diagram	30
Figure 33.	MultiSense block diagram	31
Figure 34.	Analogue HSD – open-load detection in off-state	32
Figure 35.	Open-load / short to VCC condition	33
Figure 36.	GND voltage shift	34
Figure 37.	Maximum turn off current versus inductance	35
Figure 38.	PowerSSO-36 PCB board	36
Figure 39.	R _{thi-amb} vs PCB copper area in open box free air condition (one channel on)	37
Figure 40.	PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)	
Figure 41.	Thermal fitting model of a double-channel HSD in PowerSSO-16	
Figure 42.	PowerSSO-36 package dimensions	
Figure 43.	PowerSSO-36 tube shipment (no suffix)	
Figure 44.	PowerSSO-36 tape and reel shipment (suffix "TR")	42

1 Block diagram and pin description

Faultrest

Voc.—GND

Internal supply
Undervoltage
Shut-down

Channel 1

Control & Diagnostic
Channel 0

Channel 1

Control & Diagnostic
Channel 0

Channel 1

Control & Diagnostic
Channel 0

Figure 1. Block diagram

Table 1. Pin functions

Name	Function
V _{CC}	Battery connection.
OUTPUT _{0,1}	Power output.
GND	Ground connection.
INPUT _{0,1}	Voltage controlled input pin with hysteresis, compatible with 3V and 5V CMOS outputs. They control output switch state.
MultiSense	Multiplexed analog sense output pin; delivers a current proportional to the selected diagnostic: load current, supply voltage or chip temperature.
SEn	Active high compatible with 3V and 5V CMOS outputs; it enables the MultiSense diagnostic pin.
SEL _{0,1}	Active high compatible with 3V and 5V CMOS outputs; they address the MultiSense multiplexer.
FaultRST	Active low compatible with 3V and 5V CMOS outputs; unlatches the output in case of fault; if kept low, sets the outputs in auto-restart mode.

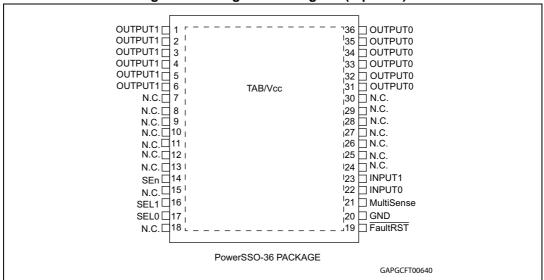


Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

Connection/pin	MultiSense	N.C.	Output	Input	SEn, SELx, FaultRST
Floating	Not allowed	X ⁽¹⁾	Х	Х	Х
To ground	Through 1 kΩ resistor	Х	Not allowed	Through 15 kΩ resistor	Through 15 kΩ resistor

1. X: do not care.

47/

DocID022886 Rev 6

2 Electrical specification

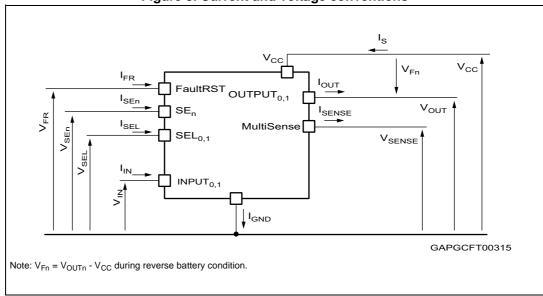


Figure 3. Current and voltage conventions

2.1 Absolute maximum ratings

Stressing the device above the rating listed in *Table 3* may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to the conditions in table below for extended periods may affect device reliability.

Symbol Unit **Parameter** Value V_{CC} DC supply voltage 38 -V_{CC} Reverse DC supply voltage 16 Maximum transient supply voltage (ISO7637-2:2004 Pulse 5b ٧ 40 V_{CCPK} level IV clamped to 40 V; $R_1 = 4 \Omega$) Maximum jump start voltage for single pulse short circuit 28 **V_{CCJS}** protection DC reverse ground pin current 200 -I_{GND} mΑ Internally limited **I**OUT OUTPUT_{0,1} DC output current Α -I_{OUT} Reverse DC output current 22 INPUT_{0,1} DC input current I_{IN} SEn DC input current I_{SEn} -1 to 10 mΑ SEL_{0.1} DC input current ISEL FaultRST DC input current I_{FR}

Table 3. Absolute maximum ratings

Table 3. Absolute maximum ratings (continued)

Symbol	Parameter	Value	Unit
V_{FR}	FaultRST DC input voltage	7.5	V
I _{SENSE}	MultiSense pin DC output current ($V_{GND} = V_{CC}$ and $V_{SENSE} < 0 V$)	10	mA
CLIVOL	MultiSense pin DC output current in reverse (V _{CC} < 0 V)	-20	
E _{MAX}	Maximum switching energy (single pulse) (T _{DEMAG} = 0.4 ms; T _{jstart} = 150°C)	144	mJ
	Electrostatic discharge (JDEC 22 A-114 F) – INPUT _{0,1}	4000	V
V _{ESD}	MultiSenseSEn, SEL_{0,1}, FaultRST	2000 4000	V
	- OUTPUT _{0,1} - V _{CC}	4000 4000	V
V _{ESD}	Charge device model (CDM-AEC-Q100-011)	750	V
Tj	Junction operating temperature	-40 to 150	°C
T _{stg}	Storage temperature	-55 to 150	

2.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Typ. value	Unit
R _{thj-board}	Thermal resistance junction-board (JEDEC JESD 51-5 / 51-8) ⁽¹⁾⁽²⁾	4	
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-5) ⁽¹⁾⁽³⁾	50.6	°C/W
R _{thj-amb}	Thermal resistance junction-ambient (JEDEC JESD 51-7) ⁽¹⁾⁽²⁾	16.6	

- 1. One channel ON.
- 2. Device mounted on four-layers 2s2p PCB
- 3. Device mounted on two-layers 2s0p PCB with 2 cm² heatsink copper trace

2.3 Main electrical characteristics

7 V < V_{CC} < 28 V; -40°C < T_j < 150°C, unless otherwise specified.

All typical values refer to V_{CC} = 13 V; T_j = 25°C, unless otherwise specified.

Table 5. Power section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{CC}	Operating supply voltage		4	13	28	
V _{USD}	Undervoltage shutdown				4	
V _{USDReset}	Undervoltage shutdown reset				5	V
V _{USDhyst}	Undervoltage shutdown hysteresis			0.3		
		I _{OUT} = 7 A; T _j = 25°C		12		
R _{ON}	On-state resistance ⁽¹⁾	I _{OUT} = 7 A; T _j = 150°C			24	mΩ
		$I_{OUT} = 7 \text{ A}; V_{CC} = 4 \text{ V}; T_j = 25^{\circ}\text{C}$			18	
R _{ON_REV}	On-state resistance in reverse battery	$I_{OUT} = -7 \text{ A}; V_{CC} = -13 \text{ V}; T_j = 25^{\circ}\text{C}$		12		mΩ
V	Clamp voltage	I _S = 20 mA; 25°C < T _j < 150°C	41	46	52	V
V _{clamp}	Clamp voltage	$I_S = 20 \text{ mA}; T_j = -40 ^{\circ}\text{C}$	38			V
		$V_{CC} = 13 \text{ V};$ $V_{IN0,1} = V_{OUT0,1} = V_{FR} = V_{SEn} 0 \text{ V};$ $V_{SEL0,1} = 0 \text{ V}; T_j = 25^{\circ}\text{C}$			0.5	μA
I _{STBY}	Supply current in standby at $V_{CC} = 13 \ V^{(2)}$	$V_{CC} = 13 \text{ V};$ $V_{IN0,1} = V_{OUT0,1} = V_{FR} = V_{SEn} \text{ 0 V};$ $V_{SEL0,1} = 0 \text{ V}; T_j = 85^{\circ}\text{C}$ (3)			0.5	μA
		$V_{CC} = 13 \text{ V};$ $V_{IN0,1} = V_{OUT0,1} = V_{FR} = V_{SEn} 0 \text{ V};$ $V_{SEL0,1} = 0 \text{ V}; T_j = 125 ^{\circ}\text{C}$			3	μA
t _{D_STBY}	Standby mode blanking time	$V_{CC} = 13 \text{ V}; V_{IN0,1} = V_{OUT0,1} = 0 \text{ V};$ $V_{FR} = V_{SEL0,1} = 0 \text{ V};$ $V_{SEn} = 5 \text{ V to 0 V}$	60	300	550	μs
I _{S(ON)}	Supply current	$V_{CC} = 13 \text{ V};$ $V_{SEn} = V_{FR} = V_{SEL0,1} = 0 \text{ V};$ $V_{IN0,1} = 5 \text{ V}; I_{OUT0} = 0 \text{ A}; I_{OUT1} = 0 \text{ A}$		5	8	mA
I _{GND(ON)}	Control stage current consumption in ON state. All channels active.	V _{CC} = 13 V; V _{SEn} = 5 V; V _{FR} = V _{SEL0,1} = 0 V; V _{IN0,1} = 5 V; I _{OUT0} = 7 A; I _{OUT1} = 7 A			10	mA

	_	_	
Table	5	Power	section

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{L(off)}	Off-state output current at V _{CC} = 13 V ⁽¹⁾	$V_{IN0,1} = V_{OUT0,1} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 25^{\circ}\text{C}$	0	0.01	0.5	- μΑ
		$V_{IN0,1} = V_{OUT0,1} = 0 \text{ V}; V_{CC} = 13 \text{ V};$ $T_j = 125^{\circ}\text{C}$	0		3	
V _F	Output - V _{CC} diode voltage ⁽¹⁾	I _{OUT} = -7 A; T _j = 150 °C			0.7	٧

- 1. For each channel.
- 2. PowerMOS leakage included.
- 3. Parameter specified by design; not subject to production test.

Table 6. Switching ($V_{CC} = 13 \text{ V}$; -40 °C < $T_j < 150 \text{ °C}$, unless otherwise specified)⁽¹⁾

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time at T _j = 25 °C	$R_{l} = 1.84 \Omega$	10	50	120	116
t _{d(off)}	Turn-off delay time at $T_j = 25$ °C	N[= 1.04 \(\)2	10	45	100	μs
(dV _{OUT} /dt) _{on}	Turn-on voltage slope at T _j = 25 °C	$R_1 = 1.84 \Omega$	0.1	0.45	0.7	V/µs
(dV _{OUT} /dt) _{off}	Turn-off voltage slope at T _j = 25 °C	1.04 22	0.2	0.5	0.8	ν/μ5
W _{ON}	Switching energy losses at turn-on (t_{won})	R _L = 1.84 Ω		0.6	1.4 ⁽²⁾	mJ
W _{OFF}	Switching energy losses at turn-off (t_{woff})	R _L = 1.84 Ω	l	0.6	1.3 ⁽²⁾	mJ
t _{SKEW}	Differential pulse skew (t _{PHL} - t _{PLH}) see <i>Figure</i> 6	R _L = 1.84 Ω	-60	-10	40	μs

- 1. See Figure 6: Switching times and Pulse skew.
- 2. Parameter guaranteed by design and characterization, not subject to production test.

Table 7. Logic Inputs (7 V < V_{CC} < 28 V; -40°C < T_j < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit					
INPUT _{0,1} characteristics											
V _{IL}	Input low level voltage				0.9	V					
I _{IL}	Low level input current	V _{IN} = 0.9 V	1			μΑ					
V _{IH}	Input high level voltage		2.1			V					
I _{IH}	High level input current	V _{IN} = 2.1 V			10	μA					
V _{I(hyst)}	Input hysteresis voltage		0.2			V					
W	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V					
V _{ICL}	input clamp voltage	$I_{IN} = -1 \text{ mA}$		-0.7		V					
FaultRST ch	FaultRST characteristics										
V _{FRL}	Input low level voltage				0.9	V					

DocID022886 Rev 6

Table 7. Logic Inputs (7 V < V_{CC} < 28 V; -40°C < T_i < 150°C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
I _{FRL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V_{FRH}	Input high level voltage		2.1			V	
I _{FRH}	High level input current	V _{IN} = 2.1 V			10	μA	
V _{FR(hyst)}	Input hysteresis voltage		0.2			V	
W	lenut aloma valta ca	I _{IN} = 1 mA	5.3		7.5	V	
V_{FRCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7		v	
SEL _{0,1} char	acteristics (7 V < V _{CC} < 18 V)						
V _{SELL}	Input low level voltage				0.9	V	
I _{SELL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V _{SELH}	Input high level voltage		2.1			V	
I _{SELH}	High level input current	V _{IN} = 2.1 V			10	μΑ	
V _{SEL(hyst)}	Input hysteresis voltage		0.2			V	
\/	1	I _{IN} = 1 mA	5.3		7.2	V	
V _{SELCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7			
SEn charac	teristics (7 V < V _{CC} < 18 V)		•	•			
V _{SEnL}	Input low level voltage				0.9	V	
I _{SEnL}	Low level input current	V _{IN} = 0.9 V	1			μΑ	
V _{SEnH}	Input high level voltage		2.1			V	
I _{SEnH}	High level input current	V _{IN} = 2.1 V			10	μΑ	
V _{SEn(hyst)}	Input hysteresis voltage		0.2			V	
V	Input clamp voltage	I _{IN} = 1 mA	5.3		7.2	V	
V_{SEnCL}	Input clamp voltage	I _{IN} = -1 mA		-0.7			

Table 8. Protections (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{LIMH} ⁽¹⁾	DC short circuit current	V _{CC} = 13 V	60	75	96	
LIMH`'	DC SHOIL CIRCUIT CUITERL	4 V < V _{CC} < 18 V ⁽²⁾			96	Α
I _{LIML}	Short circuit current during thermal cycling	$V_{CC} = 13 \text{ V};$ $T_R < T_j < T_{TSD}$		25		
T _{TSD}	Shutdown temperature		150	175	200	
T _R	Reset temperature ⁽²⁾		T _{RS} + 1	T _{RS} + 5		
T _{RS}	Thermal reset of fault diagnostic indication	V _{FR} = 0 V; V _{SEn} = 5 V	135			°C
T _{HYST}	Thermal hysteresis $(T_{TSD} - T_R)^{(2)}$			5		

Table 8. Protections (7 V < V_{CC} < 18 V; -40°C < 7	Γ _i < 150°C) (continued)
--	-------------------------------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
ΔT_{J_SD}	Dynamic temperature			60		K
t _{LATCH_RST}	Fault reset time for output unlatch ⁽²⁾	$V_{FR} = 5 \text{ V to 0 V;}$ $V_{SEn} = 5 \text{ V; } V_{IN0,1} = 5 \text{ V;}$ $V_{SEL0,1} = 0 \text{ V}$	3	10	20	μs
V _{DEMAG}	Turn-off output voltage	$I_{OUT} = 2 \text{ A}; L = 6 \text{ mH};$ $T_j = -40 \text{ °C}$	V _{CC} - 38			٧
	clamp	$I_{OUT} = 2 \text{ A}; L = 6 \text{ mH};$ $T_j = 25^{\circ}\text{C to } 150^{\circ}\text{C}$	V _{CC} - 41	V _{CC} - 46	V _{CC} - 52	
V _{ON}	Output voltage drop limitation	I _{OUT} = 0.7 A		20		mV

- 1. Parameter guaranteed by an indirect test sequence.
- 2. Parameter guaranteed by design and characterization; not subject to production test.

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
V	MultiSense clamp	V _{SEn} = 0 V; I _{SENSE} = 1 mA	-17		-12	V			
V _{SENSE_CL}	voltage	$V_{SEn} = 0 \text{ V}; I_{SENSE} = -1 \text{ mA}$		7		V			
Current Sense characteristics									
K _{OL}	I _{OUT} /I _{SENSE}	I _{OUT} = 10 mA; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	1400						
dK _{cal} /K _{cal} ⁽¹⁾⁽²⁾	Current sense ratio drift at calibration point	I_{CAL} = 130 mA; I_{OUT} = 10 mA to 250 mA; V_{SENSE} = 0.5 V; V_{SEn} = 5 V	-35		35	%			
K _{LED}	I _{OUT} /I _{SENSE}	$I_{OUT} = 250 \text{ mA};$ $V_{SENSE} = 0.5 \text{ V}; V_{SEn} = 5 \text{ V}$	2490	5100	8000				
Κ ₀	I _{OUT} /I _{SENSE}	I _{OUT} = 0.7 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	2560	5120	7680				
$dK_0/K_0^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 0.7 A; V _{SENSE} = 0.5 V; V _{SEn} = 5 V	-25		25	%			
K ₁	I _{OUT} /I _{SENSE}	I _{OUT} = 1.4 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	3480	4900	6470				
dK ₁ /K ₁ ⁽¹⁾⁽²⁾	Current sense ratio drift	I _{OUT} = 1.4 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-20		20	%			
K ₂	I _{OUT} /I _{SENSE}	I _{OUT} = 7 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	3410	4280	5120				
$dK_2/K_2^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 7 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-10		10	%			
К ₃	I _{OUT} /I _{SENSE}	I _{OUT} = 21 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	3810	4300	4660				
$dK_3/K_3^{(1)(2)}$	Current sense ratio drift	I _{OUT} = 21 A; V _{SENSE} = 4 V; V _{SEn} = 5 V	-5		5	%			

DocID022886 Rev 6

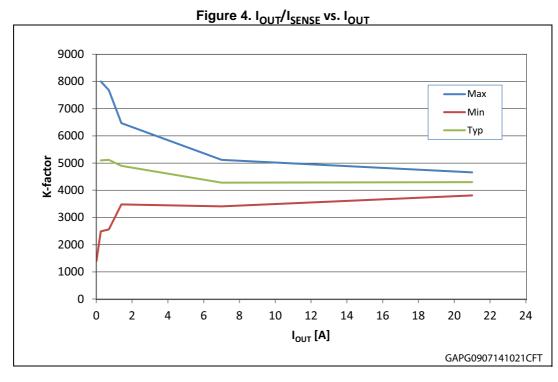
Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		MultiSense disabled: V _{SEn} = 0 V;	0		0.5	μΑ
		MultiSense disabled: -1 V < V _{SENSE} < 5 V ⁽¹⁾	-0.5		0.5	μΑ
^I SENSE0	MultiSense leakage current	$\begin{split} &\text{MultiSense enabled:} \\ &\text{V}_{\text{SEn}} = 5 \text{ V;} \\ &\text{All channel ON;} \\ &\text{I}_{\text{OUTX}} = 0 \text{ A;} \\ &\text{Ch}_{\text{X}} \text{ diagnostic selected;} \\ &- \text{E.g. Ch}_{0}\text{:} \\ &\text{V}_{\text{IN0}} = 5 \text{ V; V}_{\text{IN1}} = 5 \text{ V;} \\ &\text{V}_{\text{SEL0}} = 0 \text{ V; V}_{\text{SEL1}} = 0 \text{ V;} \\ &\text{I}_{\text{OUT0}} = 0 \text{ A; I}_{\text{OUT1}} = 7 \text{ A} \end{split}$	0		2	μА
		$\begin{split} &\text{MultiSense enabled:} \\ &\text{V}_{\text{SEn}} = 5 \text{ V;} \\ &\text{Ch}_{\text{X}} \text{ channel OFF;} \\ &\text{Ch}_{\text{X}} \text{ diagnostic selected;} \\ &- \text{E.g. Ch}_{0}\text{:} \\ &\text{V}_{\text{IN0}} = 0 \text{ V; V}_{\text{IN1}} = 5 \text{ V;} \\ &\text{V}_{\text{SEL0}} = 0 \text{ V; V}_{\text{SEL1}} = 0 \text{ V;} \\ &\text{I}_{\text{OUT1}} = 7 \text{ A} \end{split}$	0		2	μΑ
V _{OUT_MSD} ⁽¹⁾	Output Voltage for MultiSense shutdown	$\begin{split} &V_{SEn} = 5 \text{ V;} \\ &R_{SENSE} = 2.7 \text{ k}\Omega \\ &- \text{ E.g. Ch}_0\text{:} \\ &V_{IN0} = 5 \text{ V; } V_{SEL0} = 0 \text{ V;} \\ &V_{SEL1} = 0 \text{ V; } I_{OUT0} = 7 \text{ A} \end{split}$		5		V
V _{SENSE_SAT}	Multisense saturation voltage	$V_{CC} = 7 \text{ V; } R_{SENSE} = 2.7 \text{ K;}$ $V_{SEn} = 5 \text{ V; } V_{IN0} = 5 \text{ V;}$ $V_{SEL0,1} = 0 \text{ V; } I_{OUT0} = 21 \text{ A;}$ $T_j = 150^{\circ}\text{C}$	5			V
I _{SENSE_SAT} ⁽¹⁾	CS saturation current	$V_{CC} = 7 \text{ V; } V_{SENSE} = 4 \text{ V; } V_{SEn} = 5 \text{ V; } V_{IN0} = 5 \text{ V; } V_{SEL0,1} = 0 \text{ V; } T_j = 150^{\circ}\text{C}$	4			mA
I _{OUT_SAT} ⁽¹⁾	Output saturation current	V _{CC} = 7 V; V _{SENSE} = 4 V; V _{IN0} = 5 V; V _{SEn} = 5 V; V _{SEL0,1} = 0 V; T _j = 150°C	23			А
Off-state diagnos	stic					
V _{OL}	Off-state open-load voltage detection threshold	$\begin{split} &V_{\text{SEn}} = 5 \text{ V; Ch}_{\text{X}} \text{ OFF;} \\ &\text{Ch}_{\text{X}} \text{ diagnostic selected} \\ &- \text{E.g. Ch}_{0} \\ &V_{\text{IN0}} = 0 \text{ V; } V_{\text{SEL0}} = 0 \text{ V;} \\ &V_{\text{SEL1}} = 0 \text{ V;} \end{split}$	2	3	4	V
I _{L(off2)}	OFF state output sink current	$V_{IN} = 0 \text{ V}; V_{OUT} = V_{OL};$ $T_j = -40^{\circ}\text{C to } 125^{\circ}\text{C}$	-100		-15	μΑ

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
^t dstkon	Off-state diagnostic delay time from falling edge of INPUT (see XXX)	$\begin{split} & V_{SEn} = 5 \text{ V; Ch}_{X} \text{ ON to OFF} \\ & \text{transition} \\ & Ch_{X} \text{ diagnostic selected} \\ & - \text{ E.g: Ch}_{0} \\ & V_{IN0} = 5 \text{ V to 0 V;} \\ & V_{SEL0} = 0 \text{ V; V}_{SEL1} = 0 \text{ V;} \\ & I_{OUT0} = 0 \text{ A; V}_{OUT} = 4 \text{ V} \end{split}$	100	350	700	μs
t _{D_OL_V}	Settling time for valid OFF-state open load diagnostic indication from rising edge of SEn	V _{IN0} = 0 V; V _{IN1} = 0 V; V _{FR} = 0 V; V _{SEL0} = 0 V; V _{SEL1} = 0 V; V _{OUT0} = 4 V; V _{SEn} = 0 V to 5 V			60	μs
t _{D_VOL}	Off-state diagnostic delay time from rising edge of V _{OUT}	$\begin{split} &V_{\text{SEn}} = 5 \text{ V; Ch}_{\text{X}} \text{ OFF} \\ &\text{Ch}_{\text{X}} \text{ diagnostic selected} \\ &- \text{E.g. Ch}_{0} \\ &V_{\text{IN0}} = 0 \text{ V; V}_{\text{SEL0}} = 0 \text{ V;} \\ &V_{\text{SEL1}} = 0 \text{ V;} \\ &V_{\text{OUT}} = 0 \text{ V to 4 V} \end{split}$		5	30	μs
Chip temperature	analog feedback					
		$V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{IN0,1} = 0 \text{ V}; R_{SENSE} = 1 \text{ K}\Omega; T_j = -40^{\circ}\text{C}$	2.325	2.41	2.495	V
V _{SENSE_TC}	MultiSense output voltage proportional to chip temperature	$V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{IN0,1} = 0 \text{ V}; R_{SENSE} = 1 \text{ K}\Omega; T_j = 25^{\circ}\text{C}$	1.985	2.07	2.155	V
		$V_{SEn} = 5 \text{ V}; V_{SEL0} = 0 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{IN0,1} = 0 \text{ V}; R_{SENSE} = 1 \text{ K}\Omega; T_j = 125^{\circ}\text{C}$	1.435	1.52	1.605	V V mV/K
dV _{SENSE_TC} /dT ⁽¹⁾	Temperature coefficient	T _j = -40°C to 150°C		-5.5		mV/K
Transfer function		V_{SENSE_TC} (T) = V_{SENSE_TC} T_0)	(T ₀) + d	V _{SENSE}	_{_TC} / dT	* (T -
V _{CC} supply voltage	ge analog feedback					
V _{SENSE_VCC}	MultiSense output voltage proportional to V _{CC} supply voltage	$V_{CC} = 13 \text{ V}; V_{SEn} = 5 \text{ V}; V_{SEL0} = 5 \text{ V}; V_{SEL1} = 5 \text{ V}; V_{IN0,1} = 0 \text{ V}; R_{SENSE} = 1 \text{ K}\Omega$	3.16	3.23	3.3	V
Transfer function ⁽³	3)	V _{SENSE_VCC} = V _{CC} / 4				
Fault diagnostic	feedback (see <i>Table</i> 1	10)				
V _{SENSEH}	MultiSense output voltage in fault condition	$\begin{split} &V_{CC} = 13 \text{ V; } R_{SENSE} = 1 \text{ k}\Omega \\ &- \text{ E.g: } Ch_0 \text{ in open load} \\ &V_{IN0} = 0 \text{ V; } V_{SEn} = 5 \text{ V;} \\ &V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V;} \\ &I_{OUT0} = 0 \text{ A; } V_{OUT} = 4 \text{ V} \end{split}$	5		6.6	٧

DocID022886 Rev 6


Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_{j} < 150°C) (continued)

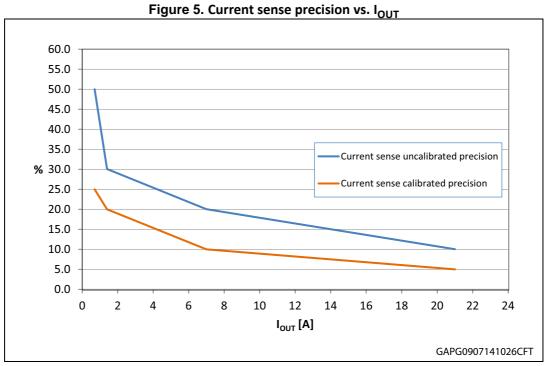

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit			
I _{SENSEH}	MultiSense output current in fault condition	V _{CC} = 13 V; V _{SENSE} = 5 V	7	20	30	mA			
MultiSense timings (current sense mode - see <i>Figure</i> 7) ⁽⁴⁾									
^t DSENSE1H	Current sense settling time from rising edge of SEn	$\begin{aligned} &V_{\text{IN}} = 5 \text{ V;} \\ &V_{\text{SEn}} = 0 \text{ V to 5 V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; \\ &R_{\text{L}} = 1.84 \Omega \end{aligned}$			60	μs			
^t DSENSE1L	Current sense disable delay time from falling edge of SEn	$\begin{aligned} &V_{\text{IN}} = 5 \text{ V;} \\ &V_{\text{SEn}} = 5 \text{ V to 0 V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega; \\ &R_{\text{L}} = 1.84 \Omega \end{aligned}$		5	20	μs			
t _{DSENSE2} H	Current sense settling time from rising edge of INPUT	$\begin{aligned} &V_{\text{IN}} = 0 \text{ V to 5 V;} \\ &V_{\text{SEn}} = 5 \text{ V;} \text{ R}_{\text{SENSE}} = 1 \text{ k}\Omega; \\ &R_{\text{L}} = 1.84 \Omega \end{aligned}$		100	250	μs			
$\Delta t_{ extsf{DSENSE2H}}$	Current sense settling time from rising edge of I _{OUT} (dynamic response to a step change of I _{OUT})	$V_{IN} = 5 \text{ V; } V_{SEn} = 5 \text{ V;}$ $R_{SENSE} = 1 \text{ k}\Omega;$ $R_{L} = 1.84 \Omega$			100	μs			
t _{DSENSE2L}	Current sense turn- off delay time from falling edge of INPUT	$\begin{aligned} &V_{\text{IN}} = 5 \text{ V to 0 V;} \\ &V_{\text{SEn}} = 5 \text{ V; } R_{\text{SENSE}} = 1 \text{ k}\Omega; \\ &R_{\text{L}} = 1.84 \Omega \end{aligned}$		50	250	μs			
MultiSense timir	ngs (chip temperature	sense mode - see Figure 8)	(4)						
t _{DSENSE3H}	V _{SENSE_TC} settling time from rising edge of SEn	$\begin{split} &V_{SEn} = 0 \text{ V to 5 V;} \\ &V_{SEL0} = 0 \text{ V; } V_{SEL1} = 5 \text{ V;} \\ &R_{SENSE} = 1 \text{ k}\Omega \end{split}$			60	μs			
t _{DSENSE3L}	V _{SENSE_TC} disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to 0 V};$ $V_{SEL0} = 0 \text{ V}; V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs			
MultiSense timir	ngs (V _{CC} voltage sense	e mode - see <i>Figure 8</i>) ⁽⁴⁾							
t _{DSENSE4H}	V _{SENSE_VCC} settling time from rising edge of SEn	$V_{SEn} = 0 \text{ V to 5 V};$ $V_{SEL0} = 5 \text{ V};$ $V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			60	μs			
t _{DSENSE4L}	V _{SENSE_VCC} disable delay time from falling edge of SEn	$V_{SEn} = 5 \text{ V to } 0 \text{ V};$ $V_{SEL0} = 5 \text{ V}; V_{SEL1} = 5 \text{ V};$ $R_{SENSE} = 1 \text{ k}\Omega$			20	μs			
MultiSense timir	MultiSense timings (Multiplexer transition times) ⁽⁴⁾								
t _{D_XtoY}	MultiSense transition delay from Ch _X to Ch _Y	$\begin{aligned} &V_{\text{IN0}} = 5 \text{ V; } V_{\text{IN1}} = 5 \text{ V;} \\ &V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL1}} = 0 \text{ V;} \\ &V_{\text{SEL0}} = 0 \text{ V to 5 V;} \\ &I_{\text{OUT0}} = 0 \text{A; } I_{\text{OUT1}} = 3 \text{ A;} \\ &R_{\text{SENSE}} = 1 \text{ k} \Omega \end{aligned}$			20	μs			

Table 9. MultiSense (7 V < V_{CC} < 18 V; -40°C < T_j < 150°C) (continued)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{D_CSto} TC	MultiSense transition delay from current sense to T _C sense	$V_{IN0} = 5 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0} = 0 \text{ V; } V_{SEL1} = 0 \text{ V to 5 V; } I_{OUT0} = 3.5 \text{ A; } R_{SENSE} = 1 \text{ k}\Omega$			60	μs
t _{D_} TCtoCS	MultiSense transition delay from T _C sense to current sense	$\begin{aligned} & V_{\text{IN0}} = 5 \text{ V; } V_{\text{SEn}} = 5 \text{ V;} \\ & V_{\text{SEL0}} = 0 \text{ V;} \\ & V_{\text{SEL1}} = 5 \text{ V to 0 V;} \\ & I_{\text{OUT0}} = 3.5 \text{ A;} \\ & R_{\text{SENSE}} = 1 \text{ k}\Omega \end{aligned}$			20	μs
^t D_CStoVCC	MultiSense transition delay from current sense to V _{CC} sense	$V_{IN1} = 5 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0} = 5 \text{ V; } V_{SEL1} = 0 \text{ V to 5 V; } I_{OUT1} = 3.5 \text{A; } R_{SENSE} = 1 \text{ k}\Omega$			60	μs
t _{D_} vcctocs	MultiSense transition delay from V _{CC} sense to current sense	$V_{IN1} = 5 \text{ V; } V_{SEn} = 5 \text{ V; } V_{SEL0} = 5 \text{ V; } V_{SEL1} = 5 \text{ V to 0 V; } I_{OUT1} = 3.5 \text{ A; } R_{SENSE} = 1 \text{ k}\Omega$			20	μs
t _{D_TCto} vcc	MultiSense transition delay from T _C sense to V _{CC} sense	$\begin{split} &V_{CC} = 13 \text{ V; } T_j = 125^{\circ}\text{C;} \\ &V_{SEn} = 5 \text{ V;} \\ &V_{SEL0} = 0 \text{ V to 5 V;} \\ &V_{SEL1} = 5 \text{ V;} \\ &R_{SENSE} = 1 \text{ k}\Omega \end{split}$			20	μs
t _{D_} vcc _{to} Tc	MultiSense transition delay from V _{CC} sense to T _C sense	$\begin{split} &V_{CC} = 13 \text{ V; } T_j = 125^{\circ}\text{C;} \\ &V_{SEn} = 5 \text{ V;} \\ &V_{SEL0} = 5 \text{ V to 0 V;} \\ &V_{SEL1} = 5 \text{ V;} \\ &R_{SENSE} = 1 \text{ k}\Omega \end{split}$			20	μs
t _{D_CSto} VSENSEH	MultiSense transition delay from stable current sense on Ch _X to V _{SENSEH} on Ch _Y	$\begin{aligned} &V_{\text{IN0}} = 5 \text{ V; } V_{\text{IN1}} = 0 \text{ V;} \\ &V_{\text{SEn}} = 5 \text{ V; } V_{\text{SEL1}} = 0 \text{ V;} \\ &V_{\text{SEL0}} = 0 \text{ V to 5 V;} \\ &I_{\text{OUT0}} = 7 \text{ A; } V_{\text{OUT1}} = 4 \text{ V;} \\ &R_{\text{SENSE}} = 1 \text{ k}\Omega \end{aligned}$			20	μs

- 1. Parameter specified by design; not subject to production test.
- 2. All values refer to V_{CC} = 13 V; T_j = 25 °C, unless otherwise specified.
- 3. V_{CC} sensing and T_{C} sensing are referred to GND potential.
- 4. Transition delay are measured up to +/- 10% of final conditions.

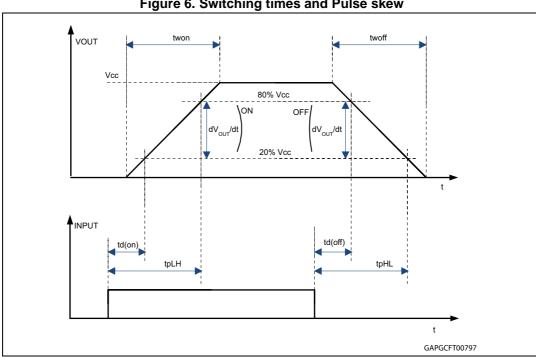
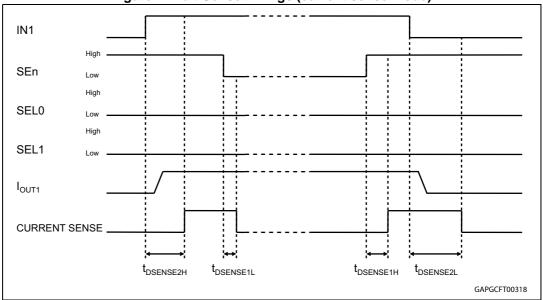



Figure 6. Switching times and Pulse skew

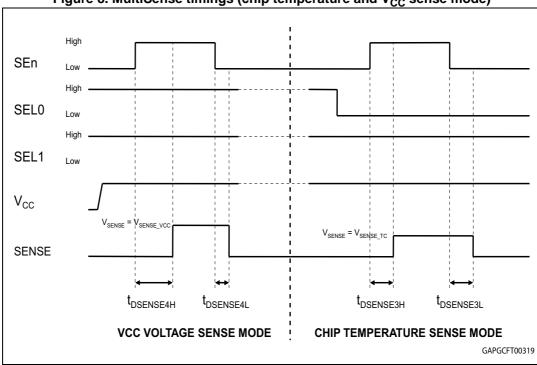
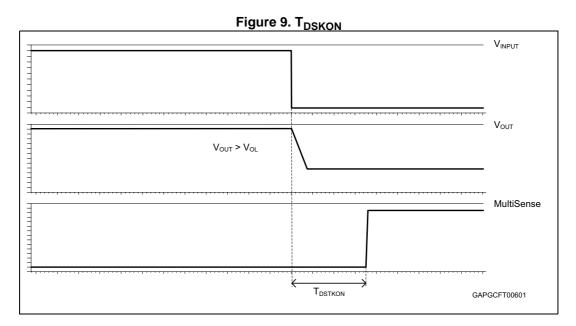



Figure 8. MultiSense timings (chip temperature and V_{CC} sense mode)

(--

Table 10. Truth table

Mode	Conditions	IN _X	FR	SEn	SELX	OUT _X	MultiSense	Comments
Standby	All logic inputs low	L	L	L	L	L	Hi-Z	Low quiescent current consumption
		L	Х			L		
Normal	Nominal load connected;	Н	L	_	er to	Н	Refer to Table 11	Outputs configured for auto-restart
	T _j < 150°C	Н	Н			Н		Outputs configured for latch off
	Overload or short to GND causing: $T_j > T_{TSD}$ or $\Delta T_j > \Delta T_{j_SD}$	L	Х			L		
Overload		Н	L	_	er to le 11	Н	Refer to Table 11	Output cycles with temperature hysteresis
		Н	Н			L		Output latches off
Under- voltage	V _{CC} < V _{USD} (falling)	Х	Х	Х	Х		Hi-Z Hi-Z	Re-start when V _{CC} > V _{USD} + V _{USDhyst} (rising)
Off-state	Short to V _{CC}	L	Х	Ref	Refer to		Refer to	
diagnostics	Open-load	L	Х	Tab	ole 11	Н	Table 11	External pull up
Negative output voltage	Inductive loads turn-off	L	х	_	er to	< 0 V	Refer to Table 11	

Table 11. MultiSense multiplexer addressing

				MultiSense output							
SEn	SEL ₁	SEL ₀	MUXchannel	Normal mode	Overload	Off-state diag. ⁽¹⁾	Negative output				
L	Х	Х		Hi-Z							
Н	L	L	Channel 0 diagnostic	I _{SENSE} = 1/K * I _{OUT0}			Hi-Z				
Н	L	Н	Channel 1 diagnostic	I _{SENSE} = V _{SENSE} = V _{SENSE} = V _{SENSE}		V _{SENSE} = V _{SENSEH}	Hi-Z				
Н	Н	L	T _{CHIP} Sense	V _{SENSE} = V _{SENSE} TC							
Н	Н	Н	V _{CC} Sense	V _{SENSE} = V _{SENSE_VCC}							

In case the output channel corresponding to the selected MUX channel is latched off while the relevant input is low, Multisense pin delivers feedback according to OFF-State diagnostic. Example 1: FR = 1; IN₀ = 0; OUT₀ = L (latched); MUX channel = channel 0 diagnostic; Mutisense = 0
 Example 2: FR = 1; IN₀ = 0; OUT₀ = latched, V_{OUT0} > V_{OL}; MUX channel = channel 0 diagnostic; Mutisense = V_{SENSEH}

2.4 Electrical characteristics curves

Figure 10. OFF-state output current

Figure 11. Standby current

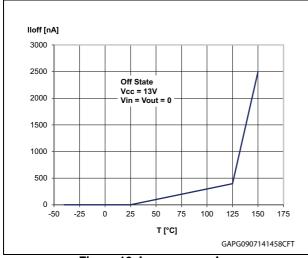
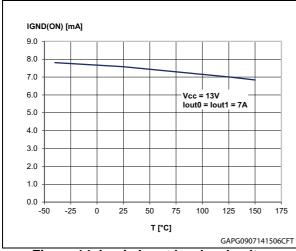



Figure 12. I_{GND(ON)} vs. I_{out}

Figure 13. Logic Input high level voltage

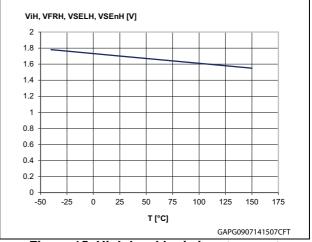
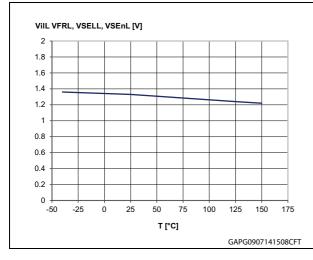



Figure 14. Logic Input low level voltage

Figure 15. High level logic input current

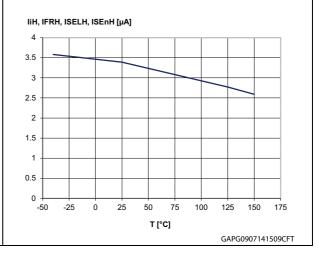
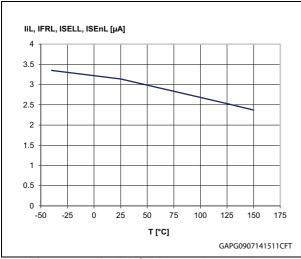



Figure 16. Low level logic input current

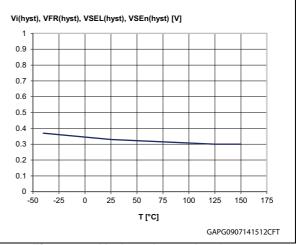
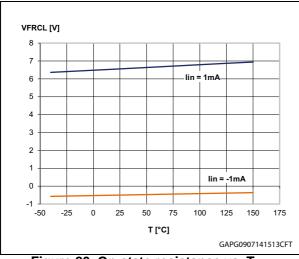



Figure 18. FaultRST Input clamp voltage

Figure 19. Undervoltage shutdown

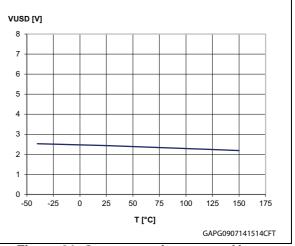
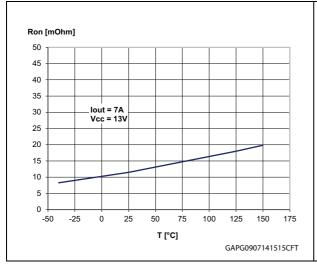
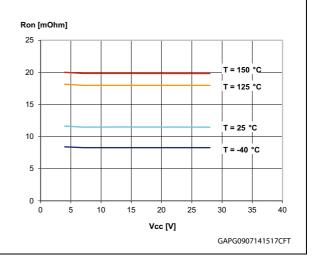
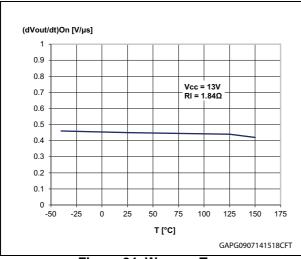




Figure 20. On-state resistance vs. T_{case}

Figure 21. On-state resistance vs. V_{CC}



47/

DocID022886 Rev 6

Figure 22. Turn-on voltage slope

Figure 23. Turn-off voltage slope

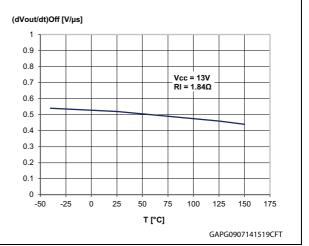


Figure 24. Won vs. T_{case}

Figure 25. Woff vs. T_{case}

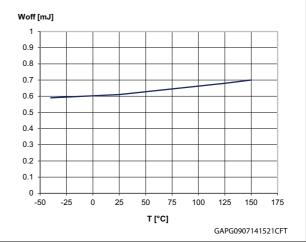
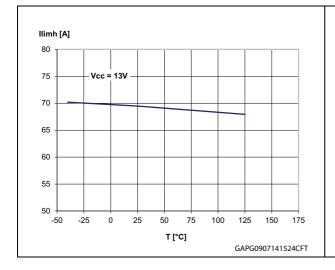



Figure 26. I_{LIMH} vs. T_{case}

Figure 27. OFF-state open-load voltage detection threshold

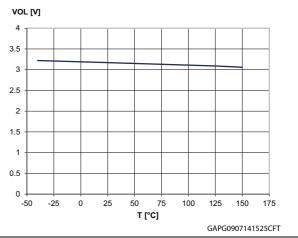


Figure 28. V_{sense} clamp vs. T_{case}

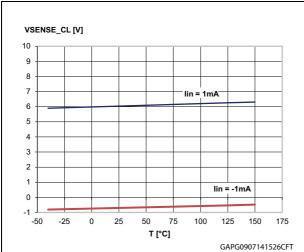
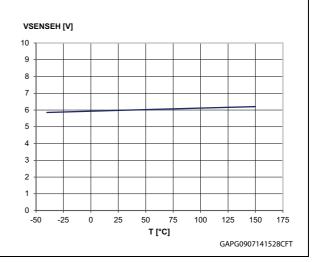



Figure 29. V_{senseh} vs. T_{case}

Protections VND7012AY-E

3 Protections

3.1 Power limitation

The basic working principle of this protection consists of an indirect measurement of the junction temperature swing ΔT_j through the direct measurement of the spatial temperature gradient on the device surface in order to automatically shut off the output MOSFET as soon as ΔT_j exceeds the safety level of ΔT_{j_SD} . According to the voltage level on the FaultRST pin, the output MOSFET switches on and cycles with a thermal hysteresis according to the maximum instantaneous power which can be handled (FaultRST = Low) or remains off (FaultRST = High). The protection prevents fast thermal transient effects and, consequently, reduces thermo-mechanical fatigue.

3.2 Thermal shutdown

In case the junction temperature of the device exceeds the maximum allowed threshold (typically 175°C), it automatically switches off and the diagnostic indication is triggered. According to the voltage level on the FaultRST pin, the device switches on again as soon as its junction temperature drops to T_R (see *Table 8*, FaultRST = Low) or remains off (FaultRST = High).

3.3 Current limitation

The device is equipped with an output current limiter in order to protect the silicon as well as the other components of the system (e.g. bonding wires, wiring harness, connectors, loads, etc.) from excessive current flow. Consequently, in case of short circuit, overload or during load power-up, the output current is clamped to a safety level, I_{LIMH}, by operating the output power MOSFET in the active region.

3.4 Negative voltage clamp

In case the device drives inductive load, the output voltage reaches negative value during turn off. A negative voltage clamp structure limits the maximum negative voltage to a certain value, V_{DEMAG} (see *Table 8*), allowing the inductor energy to be dissipated without damaging the device.

4 Application information

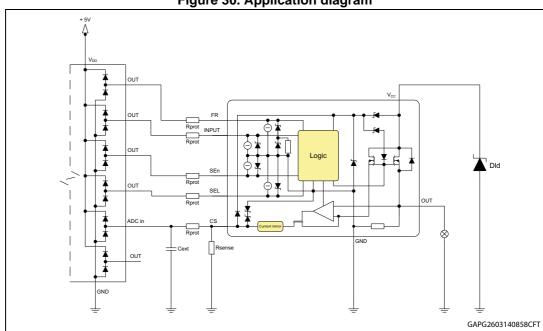


Figure 30. Application diagram

4.1 GND protection network against reverse battery

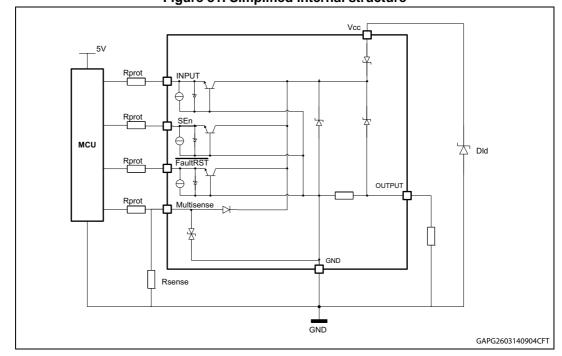


Figure 31. Simplified internal structure

47/

DocID022886 Rev 6

The device does not need any external components to protect the internal logic in case of a reverse battery condition. The protection is provided by internal structures.

In addition, due to the fact that the output MOSFET turns on even in reverse battery mode, thus providing the same low ohmic path as in regular operating conditions, no additional power dissipation has to be considered.

4.2 Immunity against transient electrical disturbances

The immunity of the device against transient electrical emissions, conducted along the supply lines and injected into the V_{CC} pin, is tested in accordance with ISO7637-2:2011 (E) and ISO 16750-2:2010.

The related function performance status classification is shown in *Table 12*.

Test pulses are applied directly to DUT (Device Under Test) both in ON and OFF-state and in accordance to ISO 7637-2:2011(E), chapter 4. The DUT is intended as the present device only, without components and accessed through $V_{\rm CC}$ and GND terminals.

Status II is defined in ISO 7637-1 Function Performance Status Classification (FPSC) as follows: "The function does not perform as designed during the test but returns automatically to normal operation after the test".

Test Pulse 2011(E)	Test pulse severity level with Status II functional performance status		level with Status II Minimum Burst cycle / pulse repetition time		•	Pulse duration and pulse generator internal impedance	
	Level	U _s ⁽¹⁾	unie	min	max		
1	III	-112V	500 pulses	0,5 s		2ms, 10Ω	
2a	III	+55V	500 pulses	0,2 s	5 s	50μs, 2Ω	
3a	IV	-220V	1h	90 ms	100 ms	0.1μs, 50Ω	
3b	IV	+150V	1h	90 ms	100 ms	0.1μs, 50Ω	
4 ⁽²⁾	IV	-7V	1 pulse			100ms, 0.01Ω	
Load dump according to ISO 16750-2:2010							
Test B ⁽³⁾		40V	5 pulse	1 min		400ms, 2Ω	

Table 12. ISO 7637-2 - electrical transient conduction along supply line

4.3 MCU I/Os protection

If a ground protection network is used and negative transients are present on the V_{CC} line, the control pins will be pulled negative. ST suggests to insert a resistor (R_{prot}) in line both to prevent the microcontroller I/O pins to latch-up and to protect the HSD inputs.

DocID022886 Rev 6

^{1.} U_S is the peak amplitude as defined for each test pulse in ISO 7637-2:2011(E), chapter 5.6.

^{2.} Test pulse from ISO 7637-2:2004(E).

^{3.} With 40 V external suppressor referred to ground (-40°C < T_j < 150°C).

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

Equation 1

 $V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C}-V_{IH}-V_{GND}) / I_{IHmax}$

Calculation example:

For $V_{CCpeak} = -150 \text{ V}$; $I_{latchup} \ge 20 \text{mA}$; $V_{OHuC} \ge 4.5 \text{V}$

 $7.5~k\Omega \leq R_{prot} \leq 140~k\Omega.$

Recommended values: $R_{prot} = 15 \text{ k}\Omega$

4.4 MultiSense - analog current sense

Diagnostic information on device and load status are provided by an analog output pin (MultiSense) delivering the following signals:

- Current monitor: current mirror of channel output current
- V_{CC} monitor: voltage propotional to V_{CC}
- T_{CASE}: voltage propotional to chip temperature

Those signals are routed through an analog multiplexer which is configured and controlled by means of SELx and SEn pins, according to the address map in *Table 11*.

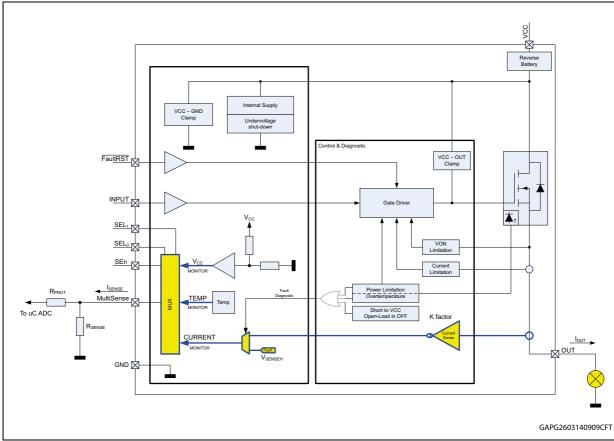


Figure 32. MultiSense and diagnostic – block diagram

4.4.1 Principle of MultiSense signal generation

Sense MOS

Main MOS

Votat Monitor

Temperature monitor

Multisense Switch Block

Fault

RSENSE

GAPGCFT01040

Figure 33. MultiSense block diagram

Current monitor

When current mode is selected in the MultiSense, this output is capable to provide:

- Current mirror proportional to the load current in normal operation, delivering current proportional to the load according to known ratio named K
- Diagnostics flag in fault conditions delivering fixed voltage V_{SENSEH}

The current delivered by the current sense circuit, I_{SENSE} , can be easily converted to a voltage V_{SENSE} by using an external sense resistor, R_{SENSE} , allowing continuous load monitoring and abnormal condition detection.

Normal operation (channel ON, no fault, SEn active)

While device is operating in normal conditions (no fault intervention), V_{SENSE} calculation can be done using simple equations

Current provided by MultiSense output: $I_{SENSE} = I_{OUT}/K$

DocID022886 Rev 6

Voltage on R_{SENSE}: V_{SENSE} = R_{SENSE} · I_{SENSE} = R_{SENSE} · I_{OUT}/K

Where:

- V_{SENSE} is voltage measurable on R_{SENSE} resistor
- I_{SENSE} is current provided from MultiSense pin in current output mode
- I_{OUT} is current flowing through output
- K factor represents the ratio between PowerMOS cells and SenseMOS cells; its spread includes geometric factor spread, current sense amplifier offset and process parameters spread of overall circuitry specifying ratio between I_{OUT} and I_{SENSE}.

Failure flag indication

In case of power limitation/overtemperature, the fault is indicated by the MultiSense pin which is switched to a "current limited" voltage source, V_{SENSEH} (see *Table 9*).

In any case, the current sourced by the MultiSense in this condition is limited to I_{SENSEH} (see *Table 9*).

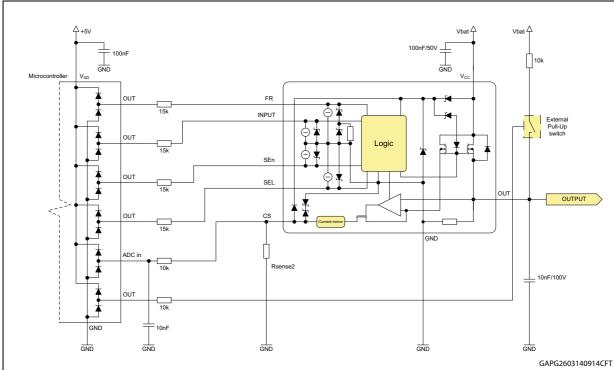


Figure 34. Analogue HSD – open-load detection in off-state

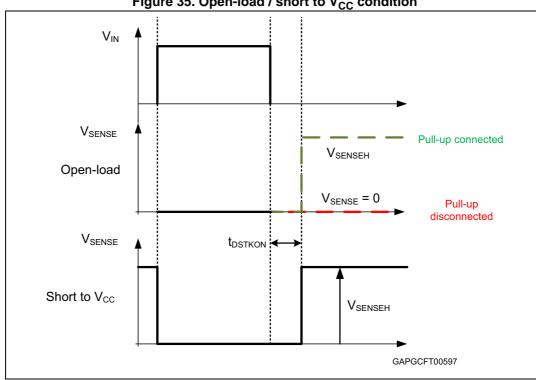


Figure 35. Open-load / short to $V_{\mbox{\footnotesize CC}}$ condition

Table 13. MultiSense pin levels in off-state

Condition	Output	MultiSense	SEn	
	V> V	Hi-Z	L	
Open-load	$V_{OUT} > V_{OL}$	V _{SENSEH}	H L H	
Орепноач	V V .	Hi-Z	L H	
	V _{OUT} < V _{OL}	0		
Short to V _{CC}	V V .	Hi-Z	L	
	$V_{OUT} > V_{OL}$	V _{SENSEH}	Н	
Nominal	V _{OUT} < V _{OL}	Hi-Z	L	
	VOUI < VOL	0	Н	

4.4.2 T_{CASE} and V_{CC} monitor

In this case, MultiSense output operates in voltage mode and output level is referred to device GND. Care must be taken in case a GND network protection is used, because of a voltage shift is generated between device GND and the microcontroller input GND reference.

Figure 36 shows link between $\rm V_{MEASURED}$ and real $\rm V_{SENSE}$ signal.

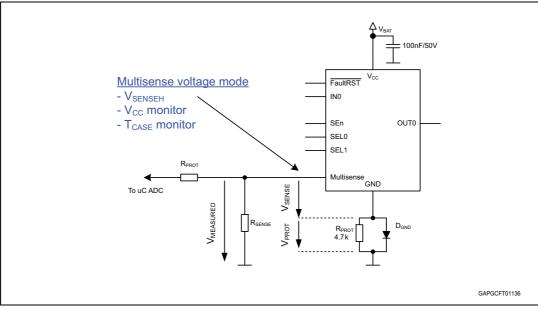


Figure 36. GND voltage shift

V_{CC} monitor

Battery monitoring channel provides $V_{SENSE} = V_{CC} / 4$.

Case temperature monitor

Case temperature monitor is capable to provide information about the actual device temperature. Since a diode is used for temperature sensing, the following equation describes the link between temperature and output V_{SENSE} level:

$$V_{SENSE_TC}(T) = V_{SENSE_TC}(T_0) + dV_{SENSE_TC} / dT * (T - T_0)$$

where $dV_{SENSE-TC}$ / $dT \sim typically -5.5 mV/K$ (for temperature range (-40 °C to 150 °C).

4.4.3 Short to V_{CC} and OFF-state open-load detection

Short to V_{CC}

A short circuit between V_{CC} and output is indicated by the relevant current sense pin set to V_{SENSEH} during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

OFF-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor R_{PU} connecting the output to a positive supply voltage V_{PU} .

It is preferable V_{PU} to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected.

 R_{PU} must be selected in order to ensure $V_{OUT} > V_{OLmax}$ in accordance with the following equation:

Equation 2

$$R_{PU} < \frac{V_{PU} - 4}{I_{L(off2)min @ 4V}}$$

4.5 Maximum demagnetization energy ($V_{CC} = 16 \text{ V}$)

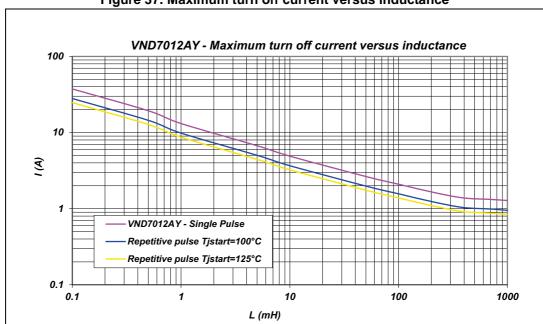


Figure 37. Maximum turn off current versus inductance

47/

GAPG1007140727CFT

^{1.} Values are generated with $R_L = 0 \ \Omega$. In case of repetitive pulses, T_{istart} (at the beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

5 Package and PCB thermal data

5.1 PowerSSO-36 thermal data

Figure 38. PowerSSO-36 PCB board

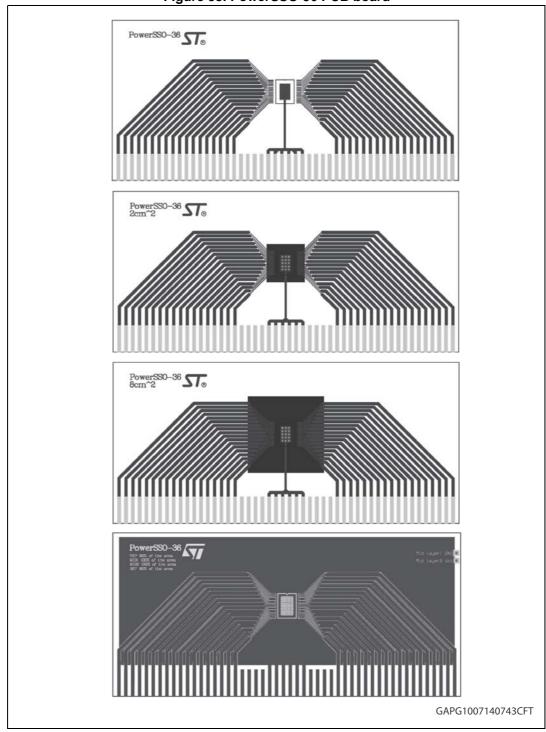
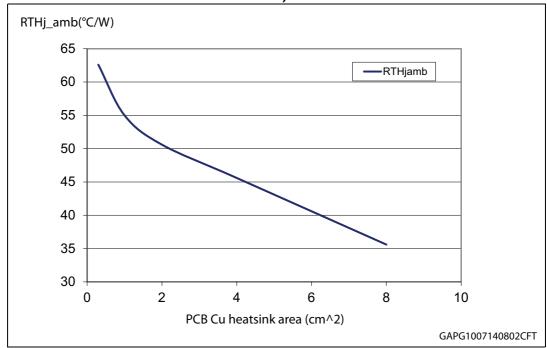
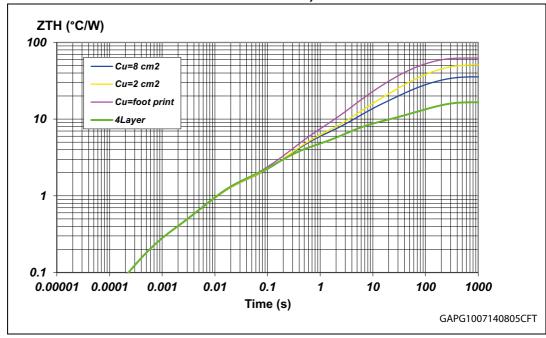
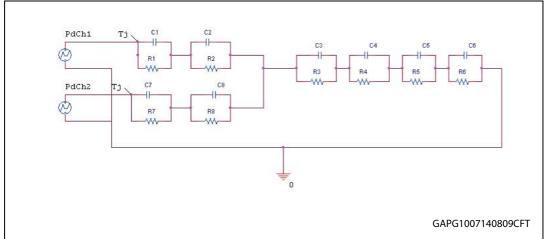



Table 14. PCB properties

Dimension	Value		
Board finish thickness	1.6 mm +/- 10%		
Board dimension	129 mm x 86 mm		
Board material	FR4		
Cu thickness (outer layers)	0.070 mm		
Cu thickness (inner layers)	0.035 mm		
Thermal via separation	1.2 mm		
Thermal via diameter	0.3 mm +/- 0.08 mm		
Cu thickness on vias	0.025 mm		
Footprint dimension	4.1 mm x 6.5 mm		

Figure 39. R_{thj-amb} vs PCB copper area in open box free air condition (one channel on)




Figure 40. PowerSSO-16 thermal impedance junction ambient single pulse (one channel on)

Equation 3: pulse calculation formula

$$Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta)$$

where $\delta = t_P/T$

Figure 41. Thermal fitting model of a double-channel HSD in PowerSSO-16

The fitting model is a simplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

Table 15. Thermal parameters

Area/island (cm ²)	Footprint	2	8	4L
R1 = R7 (°C/W)	0.2			
R2 = R8 (°C/W)	1			
R3 (°C/W)	3.4	3.4	3.4	2.4
R4 (°C/W)	8	6	6	4
R5 (°C/W)	20	14	10	2
R6 (°C/W)	30	26	15	7
C1 = C7 (W.s/°C)	0.0025			
C2 = C8 (W.s/°C)	0.01			
C3 (W.s/°C)	0.1	0.1	0.1	0.8
C4 (W.s/°C)	0.5	0.8	0.8	0.8
C5 (W.s/°C)	1	2	3	10
C6 (W.s/°C)	3	5	9	18

Package information VND7012AY-E

Package information 6

ECOPACK® 6.1

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at www.st.com.

ECOPACK® is an ST trademark.

6.2 PowerSSO-36 mechanical data

Ġ _G C BOTTOM VIEW ₽B

Figure 42. PowerSSO-36 package dimensions

Table 16. PowerSSO-36 mechanical data

2		millimeters	
Symbol	Min	Тур	Max
Α	2.15	-	2.45
A2	2.15	-	2.35
a1	0	-	0.1
b	0.18	-	0.36
С	0.23	-	0.32
D	10.10	-	10.50
E	7.4	-	7.6
е	-	0.5	-
e3	-	8.5	-
F	-	2.3	-
G	-	-	0.1
Н	10.1	-	10.5
h	-	-	0.4
k	0°	-	8°
L	0.55	-	0.85
M	-	4.3	-
N	-	-	10°
0	-	1.2	
Q	-	0.8	-
S	-	2.9	-
Т	-	3.65	-
U	-	1.0	-
X ⁽¹⁾	4.3	-	5.2
Y ⁽¹⁾	6.9	-	7.5

^{1.} Corresponding to internal variation C.

Package information VND7012AY-E

6.3 Packing information

Figure 43. PowerSSO-36 tube shipment (no suffix)

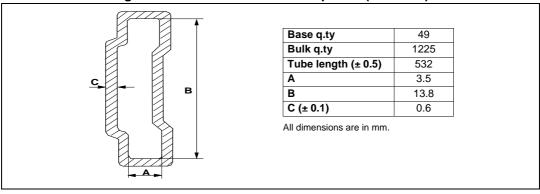
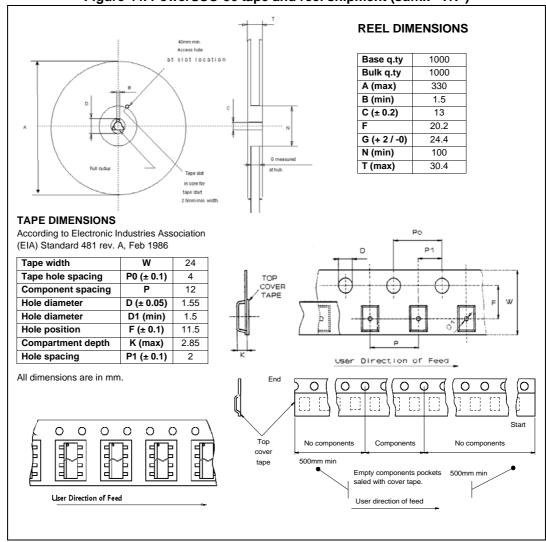



Figure 44. PowerSSO-36 tape and reel shipment (suffix "TR")

VND7012AY-E Order codes

7 Order codes

Table 17. Device summary

Package	Order codes		
rackage	Tube	Tape and reel	
PowerSSO-36	VND7012AY-E	VND7012AYTR-E	

Revision history VND7012AY-E

8 Revision history

Table 18. Document revision history

Date	Revision	Changes
05-Mar-2012	1	Initial release.
18-Feb-2013	2	Table 1: Pin functions: - GND: updated functions definitions Updated Figure 2: Configuration diagram (top view)
25-Mar-2013	3	Updated Features list Table 3: Absolute maximum ratings: Iout, Vesd: updated value - Isense, Emax: updated parameter and value Updated Table 4: Thermal data Table 5: Power section: - V _{clamp} : added test conditions and value - Ister, tdente test conditions and value - Ister, tdente test conditions and value - Vereaded row Updated Table 6: Switching (Vec = 13 V; -40 °C < Tj < 150 °C, unless otherwise specified) Table 8: Protections (7 V < Vec < 18 V; -40 °C < Tj < 150 °C): - Illimh: added note - Treet, Thyst: added note and updated value - \(\Delta T_{\text{LICH}} \); updated test conditions - tlatch_rst: added note and updated test conditions Table 9: MultiSense (7 V < Vec < 18 V; -40 °C < Tj < 150 °C): - Vsense_cl., tdente test conditions Table 9: MultiSense (7 V < Vec < 18 V; -40 °C < Tj < 150 °C): - Vsense_cl., tdente test conditions Table 9: MultiSense (7 V < Vec < 18 V; -40 °C < Tj < 150 °C): - Vsense_cl., tdente test conditions - topic conditions - topic condition - topic
18-Sep-2013	4	Updated disclaimer.

VND7012AY-E Revision history

Table 18. Document revision history

Date	Revision	Changes
16-Jan-2014	5	Table 5: Power section: – V_F : updated test conditions Updated Table 6: Switching ($V_{CC} = 13 \ V$; -40 °C < $T_j < 150 \ ^{\circ}$ C, unless otherwise specified) Table 9: MultiSense (7 V < $V_{CC} < 18 \ V$; -40 °C < $T_j < 150 \ ^{\circ}$ C) – K_{OL} , dK_{cal}/K_{cal} , K_{LED} , K_0 , K_1 , K_2 , K_3 , I_{OUT} SAT: updated values
14-Jul-2014	6	Table 3: Absolute maximum ratings: $ = E_{MAX} \text{: updated value} $ Updated Table 4: Thermal data and Table 6: Switching ($V_{CC} = 13 \ V; -40 \ ^{\circ} C < T_{j} < 150 \ ^{\circ} C, \text{ unless otherwise specified}) $ Table 9: MultiSense ($T \ V < V_{CC} < 18 \ V; -40 \ ^{\circ} C < T_{j} < 150 \ ^{\circ} C)$: $ = K_{OL}, \ K_{LED}, \ K_{1}, \ K_{2}, \ K_{3}; \text{ updated values} $ Added Figure 4: $I_{OUT}/I_{SENSE} \ vs. \ I_{OUT} \text{ and Figure 5: Current sense precision vs. } I_{OUT} $ Removed Table: Electrical transient requirements (part 1), Table: Electrical transient requirements (part 2), and Table: Electrical transient requirements (part 3) and Section: Waveforms Added Chapter 3: Protections, Chapter 4: Application information and Chapter 5: Package and PCB thermal data

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

