

Ordering Information

	Dookogo	Offset	Operating	Pookoging	13" Tape a	nd Reel
Device	Package Code	Voltage	Temperature Range	Packaging (Note 4)	Quantity	Part Number Suffix
TLC27L1CS-13	S	10mV	0 to +70°C	SO-8	2500/Tape & Reel	-13
TLC27L1ACS-13	S	5mV	0 to +70°C	SO-8	2500/Tape & Reel	-13
TLC27L1BCS-13	S	2mV	0 to +70°C	SO-8	2500/Tape & Reel	-13
TLC27L1IS-13	S	10mV	-40 to +85°C	SO-8	2500/Tape & Reel	-13
TLC27L1AIS-13	S	5mV	-40 to +85°C	SO-8	2500/Tape & Reel	-13
TLC27L1BIS-13	S	2mV	-40 to +85°C	SO-8	2500/Tape & Reel	-13

Note:

Pin Descriptions

Pin Name	Pin Number	Description
OFFSET N1	1	Offset Control Inverting Input
IN-	2	Inverting Input
IN+	3	Non-Inverting Input
GND	4	Ground
OFFSET N2	5	Offset Control Non-Inverting Input
OUT	6	Output
V_{DD}	7	Supply
V_{DD}	8	Supply

^{4.} Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Absolute Maximum Ratings (Notes 5, 6, 7, 8, 9)

Symbol	P	arameter	Rating	Unit
V_{DD}	Supply Voltage: (Note 6)		18	V
V_{ID}	Differential Input Voltage (Note 7)		±V _{DD}	V
V _{IN}	Input Voltage Range (either input)		-0.3 to V _{DD}	V
I _{IN}	Input Current	Input Current		
Ιο	Output current		±30	mA
	Output Short-Circuit to GND (Note	Continuous	_	
P_D	Power Dissipation (Note 9)		1065	mW
-	On and the Tanana and the Danier	C Grade	0 to +70	
T_A	Operating Temperature Range	I Grade	-40 to +85	°C
T_J	Operating Junction Temperature	Operating Junction Temperature		
T _{ST}	Storage Temperature Range		-65 to +150	°C
ESD HBM	Human Body Model ESD Protection	n (1.5kΩ in series with 100pF)	1.5	kV

Notes:

- 5. Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- 6. All voltage values, except differential voltages, are with respect to ground.
 7. Differential input voltages are at IN+ with respect to IN-.
- 8. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.
- 9. For operating at high temperatures, the TLC27L1 must be derated 8.5mW/°C to zero based on a +150°C maximum junction temperature and a thermal resistance of +117 °C/W when the device is soldered to a printed circuit board, operating in a still air ambient.

Recommended Operating Conditions

Cumbal	Parameter -		C grade		l gr	Unit	
Symbol			Min	Max	Min	Max	_
V_{DD}	Supply Voltage		3	16	4	16	V
V _{IC}	Common Mode Input Voltage V _I	_{DD} = 5V	-0.2	3.5	-0.2	3.5	V
	V _I	_{DD} = 10V	-0.2	8.5	-0.2	8.5	
T _A	Operating Free Air Temperature		0	+70	-40	+85	°C

					TL	.C27L1C	, TLC2	7L1AC,	TLC27L	1BC	
	Parameter		Conditions	TA	,	V _{DD} = 5V	1		V _{DD} = 10	V	Unit
					Min	Тур	Max	Min	Тур.	Max	
		TI 0071 40		+25°C	_	1.1	10	_	1.1	10	
		TLC27L1C	$V_0 = 1.4V$	0 to +70°C	_		12	_		12	
.,	land Office Valtage	TI 0071 4 4 0	$V_{IC} = 0V$	+25°C	_	0.9	5		0.9	5	\/
V _{IO}	Input Offset Voltage	TLC27L1AC	$R_S = 50\Omega$	0 to +70°C	_		6.5			6.5	mV
	TLC27L1BC		$R_L = 1M\Omega$	+25°C	_	0.24	2	_	0.26	2	
		TLC27L1BC		0 to +70°C	_		3			3	
α_{VIO}	Average Temperature Input Offset Voltage	e Coefficient of		+25 to +70°C		1.1			1		μV/°C
			$V_O = V_{DD}/2$,	+25°C	_	0.1	60	_	0.1	60	
I _{IO}	Input Offset Current	(Note 10)	$V_{IC} = V_{DD}/2$	+70°C	_	7	300	_	8	300	pA
			$V_O = V_{DD}/2$,	+25°C	_	0.6	60	_	0.7	60	
I _{IB}	Input Bias Current (Note 10)		$V_{IC} = V_{DD}/2$	+70°C	_	40	600	_	50	600	pA
				+25°C	-0.2 to	-0.3 to	_	-0.2 to	-0.3 to 9.2	_	٧
V _{ICR}	V _{ICR} Common Mode Input Voltage (N	Voltage (Note 11)	_	0°C to +70°C	-0.2 to 3.5	_	_	-0.2 to 8.5			V
			.,	+25°C	3.2	4.1	_	8	8.9	_]]
V_{OH}	High Level Output Vo	ltage	$V_{ID} = 100 \text{mV},$	0°C	3	4.1	_	7.8	8.9	_	V
			$R_L = 1M\Omega$	+70°C	3	4.2		7.8	8.9		
			\/ 400~\/	+25 [°] C	_	0	50	_	0	50	
V_{OL}	Low Level Output Vo	ltage	$V_{ID} = -100 \text{mV},$	0°C	_	0	50	_	0	50	mV
			$I_{OL} = 0$	+70°C	_	0	50	_	0	50	
			D = 1MO	+25°C	50	520	_	50	870	_	
A_{VD}	Large Signal Differen	tial Voltage Gain	$R_L = 1M\Omega$ (Note 12)	0°C	50	700	_	50	1030	_	V/mV
			(Note 12)	+70°C	50	380	_	50	660	_	
				+25°C	65	94	_	65	97	_	
CMRR	CMRR Common Mode Rejection Ratio		$V_{IC} = V_{ICRmin}$	0°C	60	95	_	60	97	_	dB
				+70°C	60	95	_	60	97	_	
	Cumply Voltage Dejection Dell's		$V_{DD} = 5V \text{ to}$	+25 [°] C	70	97	_	70	97	_]
k _{SVR}	k_{SVR} Supply Voltage Rejection $(\Delta V_{DD}/\Delta V_{IO})$	DUOTI NAUU	10V	0°C	60	97		60	97	_	dB
	(— * 10 <i>)</i>		$V_0 = 1.4V$	+70°C	60	98		60	98	_	
			$V_O = V_{DD}/2$,	+25°C		10	17	_	14	23]
I_{DD}	Supply Current		$V_{IC} = V_{DD}/2$,	0°C		12	21		18	33	μΑ
			No Load	+70°C		8	14		11	20	

Notes:

^{10.} The typical values of input bias current and input offset current below 5pA were calculated.

^{11.} This range also applies to each input individually.

^{12.} At $V_{DD} = 5V$, $V_O = 0.25V$ to 2V; at $V_{DD} = 10V$, $V_O = 1V$ to 6V.

					1	LC27L1	I, TLC2	7L1AI, 1	TLC27L	1BI	
	Parameter		Conditions	T _A	,	V _{DD} = 5\	,		V _{DD} = 10	V	Unit
					Min	Тур	Max	Min	Тур.	Max	
		TI 0071 41		+25°C	_	1.1	10	_	1.1	10	
		TLC27L1I	$V_0 = 1.4V$	-40° to 85°C	_	_	13	_	_	13	
\/	Lamest Office () / eller are	TI 0071 4 4 1	$V_{IC} = 0V$	+25°C	_	0.9	5	_	0.9	5	
VIO	V _{IO} Input Offset Voltage	TLC27L1AI	$R_S = 50\Omega$	-40° to +85°C	_	_	7	_	_	7	mV
		TLC27L1BI	$R_L = 1M\Omega$	+25°C		0.24	2		0.26	2	
	ILC2/L			-40° to +85°C		_	3.5	_		3.5	
α_{VIO}	Average Temperature Input Offset Voltage	Coefficient of	_	+25°C to +85°C		1.1			1		μV/°C
	Input Offset Current (Note 13)		$V_O = V_{DD}/2$	+25°C	_	0.1	60	_	0.1	60	0
I _{IO}			$V_{IC} = V_{DD}/2$	+85°C	_	24	1000	_	26	1000	рA
			$V_O = V_{DD}/2$	+25°C	_	0.6	60	_	0.7	60	
I _{IB}			$V_{IC} = V_{DD}/2$	+85°C	_	200	2000	_	220	2000	рA
.,	Common Mode Input Voltage (Note 14)			+25°C	-0.2 to	-0.3 to	_	-0.2 to	-0.3 to 9.2	_	V
V _{ICR}			_	-40° to +85°C	-0.2 to 3.5	_	_	-0.2 to 8.5	_	_	V
			\/ 100m\/ D	+25°C	3	4.1	_	8	8.9	_	
V_{OH}	High Level Output Vol	tage	$V_{ID} = 100 \text{mV}, R_L =$	-40°C	3	4.1	_	7.8	8.9	_	V
			1ΜΩ	+85°C	3	4.2		7.8	8.9		
			100 11	+25°C	_	0	50	_	0	50	
V_{OL}	Low Level Output Volt	age	$V_{ID} = -100 \text{mV},$ $I_{OL} = 0$	-40°C	_	0	50	_	0	50	mV
			IOL = U	+85°C	_	0	50	_	0	50	
	0' D'(()'	-1.)/-1/	$R_L = 1M\Omega$	+25°C	50	520	_	50	870		
A_{VD}	Large Signal Differenti Gain	ai voitage	(Note 15)	-40°C	50	900	_	50	1550		V/mV
	Gaiii		(Note 15)	+85°C	50	330	_	50	585		
				+25°C	65	94	_	65	97	_]
CMRR	Common Mode Reject	tion Ratio	$V_{IC} = V_{ICRmin}$	-40°C	60	95	_	60	97	_	dB
				+85°C	60	95	_	60	98	_	
	Complex Valtage Dailers	ion Dotio	\/ - F\/ to 10\/	+25°C	70	97	_	70	97		
k _{SVR}	Supply Voltage Rejection Ratio		$V_{DD} = 5V \text{ to } 10V$ $V_{O} = 1.4V$	-40°C	60	97	_	60	97	_	dB
	(A A DD, A A 10)	$(\Delta V_{DD}/\Delta V_{IO})$		+85°C	60	98	_	60	98	_	
			$V_O = V_{DD}/2$	+25°C	_	10	17	_	14	23	
I_{DD}	Supply Current		$V_{IC} = V_{DD}/2$	-40°C	_	16	27	_	25	43	μΑ
			No load	+85°C	_	17	13	_	10	18	

Notes:

^{13.} The typical values of input bias current and input offset current below 5pA were calculated.

^{14.} This range also applies to each input individually.

^{15.} At V_{DD} = 5V, V_O = 0.25V to 2V; at V_{DD} = 10V, V_O = 1V to 6V.

Parameter		Conditions		T _A	TLC2	Unit		
					Min	Тур	Max	_
				+25°C	_	0.03	_	
		$R_L = 1M\Omega$	$V_{I(PP)} = 1V$	0°C	_	0.04	_	
SR	Claus Data at Units Cain	C _L = 20pF		+70°C	_	0.03	_	\//
SK	Slew Rate at Unity Gain	See		+25°C	_	0.03	_	V/µs
		Figure 31	$V_{I(PP)} = 2.5V$	0°C	_	0.03	_	
				+70°C	_	0.02	_	
V _n	Equivalent Input Noise Voltage	F = 1kHz, R _S See Figure 3		+25°C	_	68	_	nV/√ŀ
				+25°C	_	5	_	
Вом	Maximum Output Swing		= 20pF, R_L = 1M Ω	0°C	_	6	_	kHz
	Bandwidth	See Figure 3	See Figure 31		_	4.5	_	
				+25°C	_	85	_	
B ₁	Unity Gain Bandwidth	$V_1 = 10 \text{mV}, C$	•	0°C	_	100	_	MHz
		See Figure 3	3	+70°C	_	65	_	1
		·	0. 1/ 0. 00. 5	+25°C		34°		_
φ_{m}	m Phase Margin		$0mV$, $C_L = 20pF$	0°C	_	36°	_	
		See Figure 33		+70°C		30°	_	

Parameter		Conditions		TA	TLC27L1C, TLC27L1AC, TLC27L1BC			Unit
					Min	Тур	Max	_
				+25°C		0.05	_	
		$R_L = 1M\Omega$,	$V_{I(PP)} = 1V$	0°C	_	0.05	_	
0.0	Oleve Bata at Haite Oais	C _L = 20pF		+70°C	_	0.04	_) //··-
SR	Slew Rate at Unity Gain	See Figure 31		+25°C	_	0.04	_	V/µs
			$V_{I(PP)} = 5.5V$	0°C	_	0.05	_	1
				+70°C	_	0.04	_	
V _n	Equivalent Input Noise Voltage	$F = 1kHz$, $R_S = 20\Omega$ See Figure 32		+25°C	_	68	_	nV/√Hz
				+25°C	_	1	_	kHz
Вом	Maximum Output Swing		20pF, R_L = 1MΩ	0°C	_	1.3	_	
	Bandwidth	See Figure 31		+70°C	_	0.9	_	
		.,, .		+25°C	_	110	_	
B ₁	Unity Gain Bandwidth	$V_I = 10 \text{mV}, C_L = 0.00 \text{mV}$	= 20pF	0°C	_	125	_	MHz
		See Figure 33		+70°C	_	90	_	1
		,		+25°C	_	38°	_	
фт	Phase Margin		$F = B_1, V_1 = 10 \text{mV}, C_L = 20 \text{pF}$		_	40°	_	1 _
		See Figure 33		+70°C	_	34°	_	

	Parameter		Conditions		TLC2	Unit		
					Min	Тур	Max	_
				+25°C	_	0.03	_	
		$R_L = 1M\Omega$	$V_{I(PP)} = 1V$	-40°	_	0.04	_	
		C _L = 20pF		+85°C	_	0.03	_	1
SR	Slew Rate at Unity Gain	See		+25°C	_	0.03	_	V/µs
		Figure 31	$V_{I(PP)} = 2.5V$	-40°	_	0.04	_	1
				+85°C	_	0.02	_	1
Vn	Equivalent Input Noise Voltage	F = 1kHz, R _s See Figure 32		+25°C	_	68	_	nV/√Hz
					_	5	_	
B_OM	Maximum Output Swing		= 20pF, R_L = 1M Ω	-40°	_	7	_	kHz
	Bandwidth	See Figure 3	I	+85°C	_	4	_	
			00.5	+25°C	_	85		
B ₁	Unity Gain Bandwidth	$V_1 = 10 \text{mV}, C$		-40°	_	130	_	MHz
		See Figure 33	3	+85°C	_	55	_	
				+25°C	_	34°	_	
ϕ_{m}	Phase Margin		$0mV, C_L = 20pF$ See	-40°	_	38°	_	T —
	· ·	Figure 33		+85°C	_	28°	_	
_{DD} = 1	0V							•
					TLC27L1I, TLC27L1AI,			Unit
	Parameter	Conditions		T _A	TLC27L1BI			Onit
	_				Min	Тур	Max	_
				+25°C		0.05		
		$R_L = 1M\Omega$	$V_{I(PP)} = 1V$	-40°		0.06		
SR	Slew Rate at Unity Gain	$C_L = 20pF$		+85°C	_	0.03		V/µs
SIX	Siew Rate at Officy Gain	See		+25°C		0.04	_	ν/μ5
		Figure 31	$V_{I(PP)} = 5.5V$	-40°	_	0.05		
				+85°C		0.03		
V_{n}	Equivalent Input Noise Voltage	F = 1kHz, R _s See Figure 3		+25°C	_	68		nV/√H:
				+25°C		1	_	
		$V_O = V_{OH}$, $C_L = 20pF$, $R_L = 1M\Omega$		-40°	_	1.4		kHz
Вом	Maximum Output Swing		1					1
Вом	Maximum Output Swing Bandwidth	See Figure 3	1	+85°C	_	0.8		
Вом	·	See Figure 3		+85°C +25°C		0.8 110	_	
B _{OM}	·	See Figure 3 V _I = 10mV, C	_L = 20pF					MHz
	Bandwidth	See Figure 3	_L = 20pF	+25°C	_	110	_	MHz
	Bandwidth	See Figure 3 ^o V _I = 10mV, C See Figure 3 ^o	L = 20pF 3	+25°C -40°	_	110 155	_ _	MHz
	Bandwidth	See Figure 3 ^o V _I = 10mV, C See Figure 3 ^o	_L = 20pF	+25°C -40° +85°C		110 155 80		MHz

			Figure
V _{IO}	Input Offset Voltage	Distribution	1,2
		vs. High Level Output Current	3,4
V _{OH}	High Level Output Voltage	vs. Supply Voltage	5
		vs. Free Air Temperature	6
		vs. Common Mode Input Voltage	7,8
V _{OL}	Low Level Output Voltage	vs. Differential Input Voltage	9
V _{OL}	Low Level Output Voltage	vs. Free Air Temperature	10
		vs. Low Level Output Current	11,12
	Large Signal Differential Voltage	vs. Supply Voltage	13
A _{VD}	Gain	vs. Free Air Temperature	14
I _{IB}	Input Bias Current	vs. Free Air Temperature	15
I _{IO}	Input Offset Current	vs. Free Air Temperature	15
V _{IC}	Common Mode Input Voltage	vs. Supply Voltage	16
	Supply Current	vs. Supply Voltage	17
I _{DD}	Supply Current	vs. Free Air Temperature	18
CD.	Class Data	vs. Supply Voltage	19
SR	Slew Rate	vs. Free Air Temperature	20
I _{SEL}	Bias Select Current	vs. Supply Voltage	21
V _{O(OPP)}	Maximum Peak to Peak Output Voltage	vs. Frequency	22
	Linite Coin Donal violate	vs. Free Air Temperature	23
B ₁	Unity Gain Bandwidth	vs. Supply Voltage	24
A _{VD}	Large Signal Differential Voltage Gain	vs. Frequency	29,30
		vs. Supply Voltage	25
Фт	Phase Margin	vs. Free Air Temperature	26
		vs. Capacitive Load	27
V _n	Equivalent Input Noise Voltage	vs. Frequency	28
Фshift	Phase Shift	vs. Frequency	29,30

Distribution of TLC27L1 Input Offset Voltage

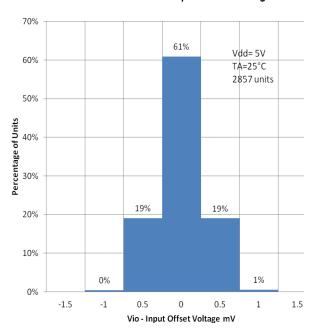


Figure 1

High-Level output voltage vs High-Level output current 5 V_D=100mV T_A=25°C V_{DD}=3V V_{DD}=3V I_{OH} - High-Level Output current- mA

Figure 3

Distribution of TLC27L1 Input Offset Voltage

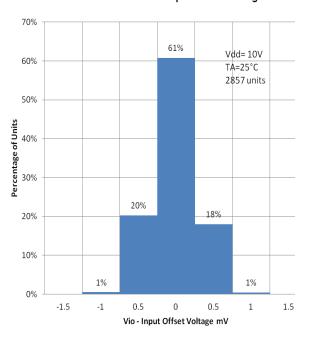


Figure 2

High-Level output voltage vs High-Level output current

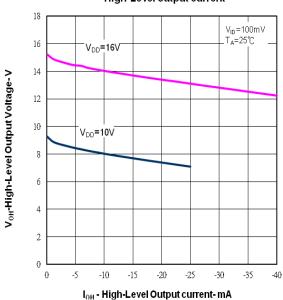


Figure 4

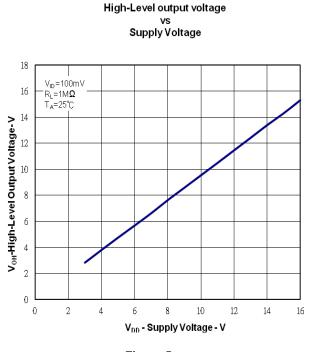
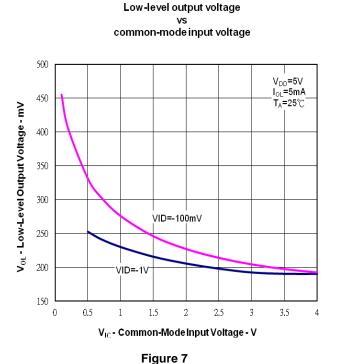



Figure 5

High-Level output voltage vs Free Air Temperature

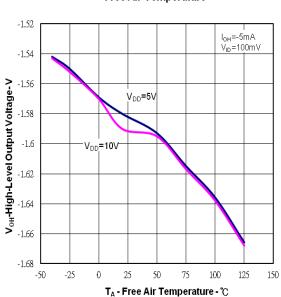
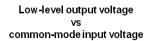



Figure 6

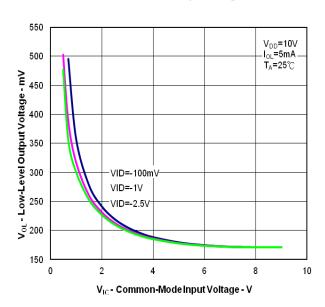


Figure 8

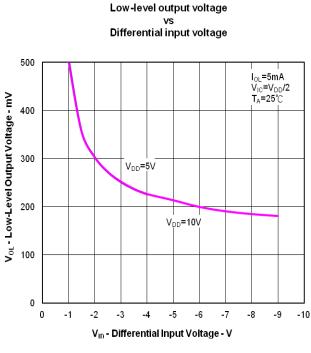
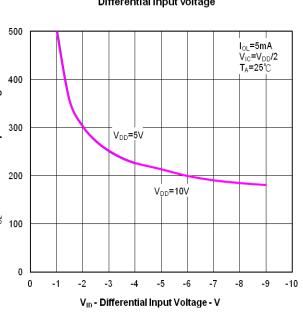



Figure 9

Low-level output voltage

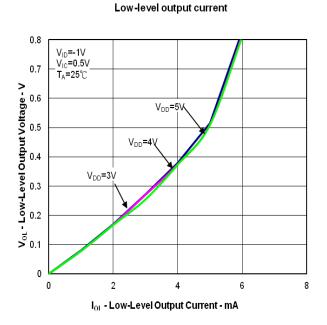


Figure 11

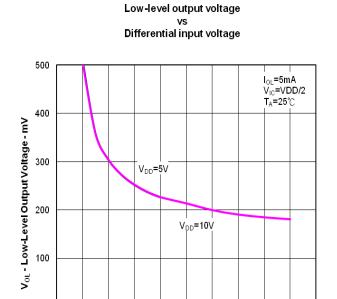
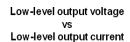



Figure 10

 V_{ID} - Differential Input Voltage - V

0

0 -1 -2

-5

-7

-8 -9 -10

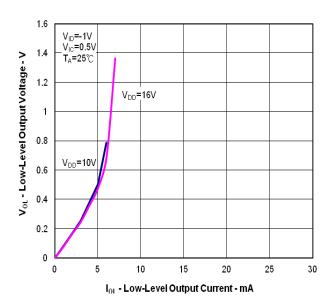


Figure 12

Large-Signal Differential Voltage Amplification vs Supply Voltage

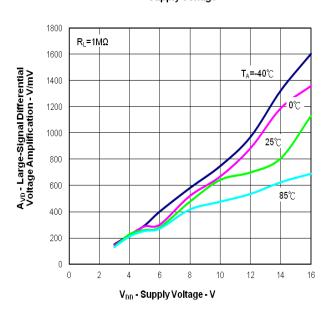


Figure 13

Input Bias Current and Input Offset Current vs Free-Air Temperature

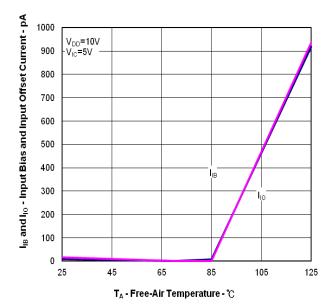


Figure 15

Large-Signal Differential Voltage Amplification vs Free-Air Temperature

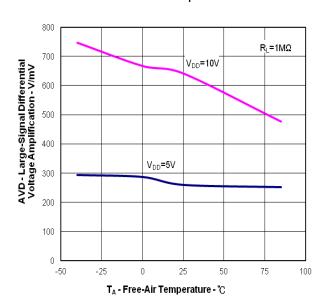


Figure 14

Common-mode input voltage (positive limit) vs Supply Voltage

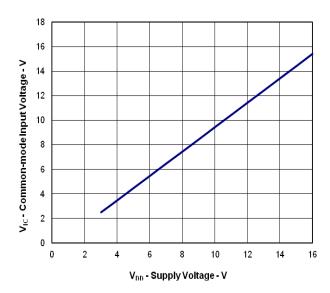


Figure 16

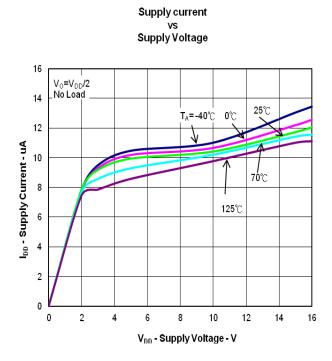


Figure 17

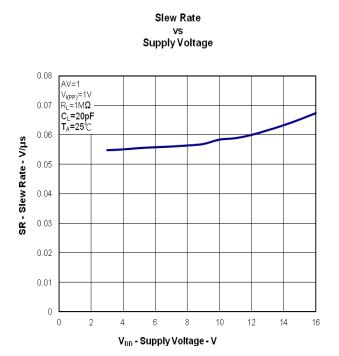


Figure 19

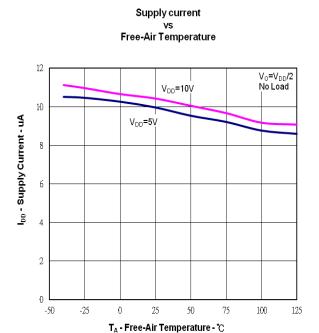


Figure 18

Slew rate

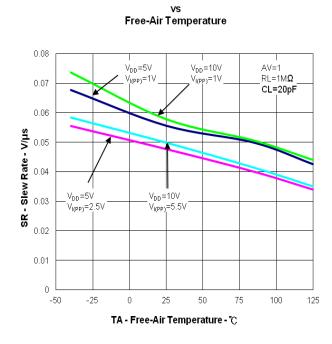


Figure 20

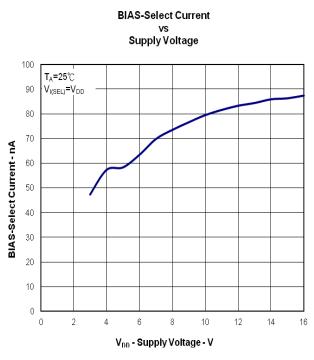


Figure 21

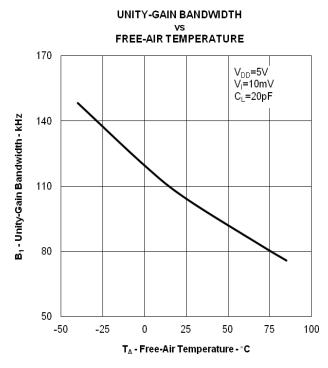


Figure 23

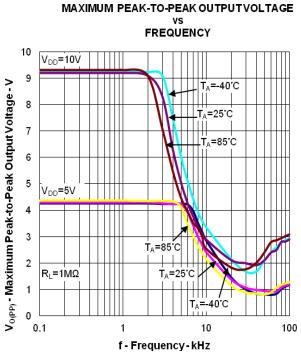


Figure 22

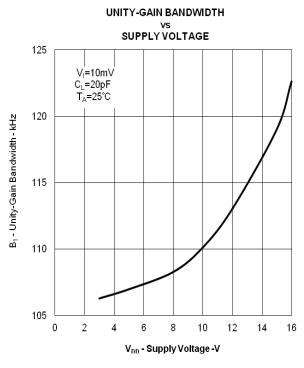


Figure 24

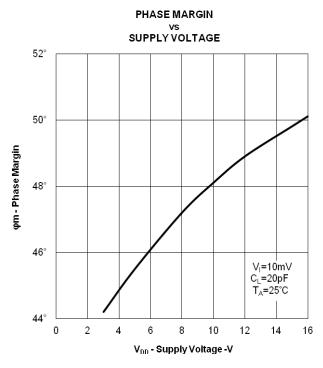


Figure 25

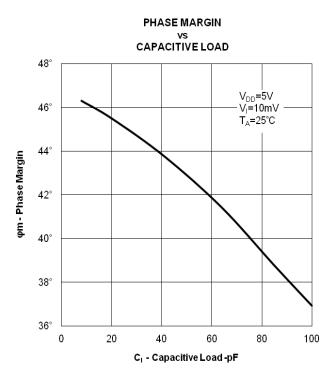


Figure 27

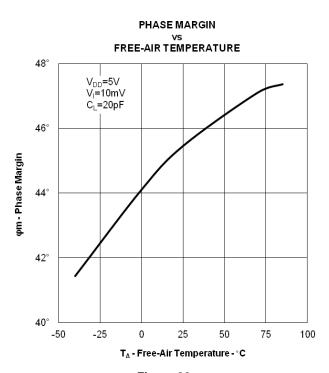


Figure 26

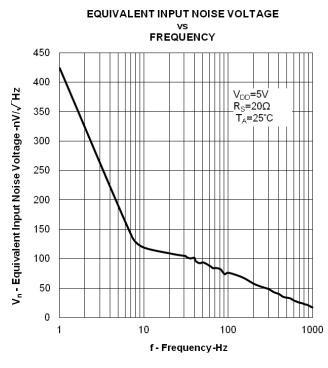
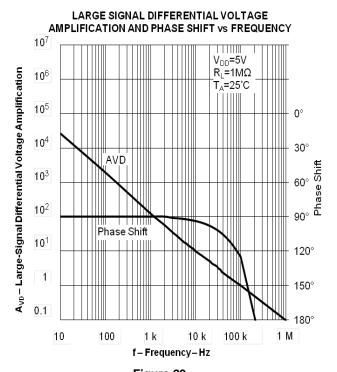



Figure 28

LARGE SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT VS FREQUENCY

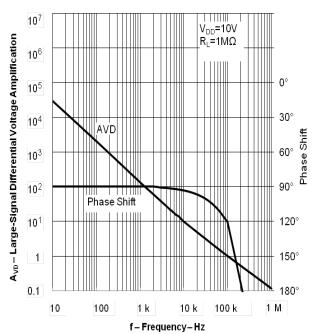


Figure 30

Application Information

Parameter measurement circuits

Because the TLC271 is optimized for single-supply operation, circuit configurations used for the various tests can present some difficulties since the input signal must be offset from ground. This issue can be avoided by testing the device with split supplies and the output load tied to the negative rail. Example circuits are shown below.

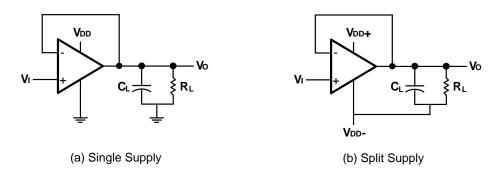


Figure 31 Measurement circuit with either single or split supply

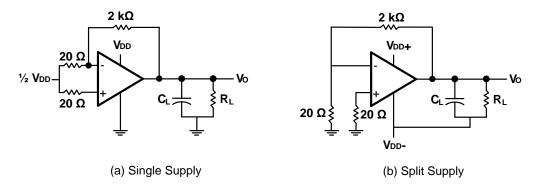
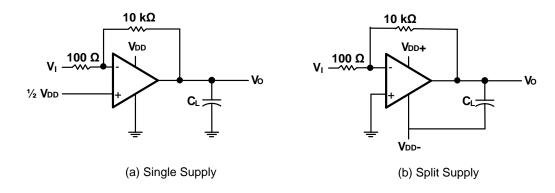
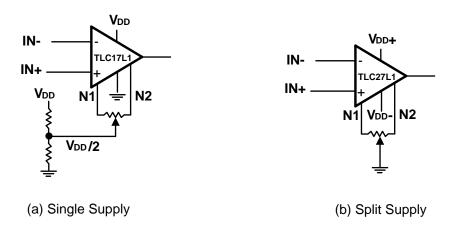


Fig 32 Noise measurement with single or split supply




Figure 33 Gain of 100 with single or split supply

Application Notes

Offset Voltage Nulling Circuit

The TLC27L1 offers external input offset null control. Nulling of the input off set voltage may be achieved by adjusting a $100-k\Omega$ potentiometer connected between the offset null terminals with the wiper connected as shown in Figure 31.

Figure 31 Offset Nulling Circuits

Input Bias Current - Error Protection

The TLC27L1 has an extremely high input impedance. To use the inputs as a high impedance node, for example, greater than100K, or to accurately measure bias current, it is necessary to place a guard ring around the input pins and drive the ring to a potential equivalent to the common mode input voltage. In many cases this common mode potential may exist as a part of the feedback circuit and can be obtained from one of the appropriate nodes. In the case for the SO8 package, pin 4 is connected to ground or Vdd-. Input pins 2 and 3 are normally well above the voltage on pin 4, so a large potential voltage on the order of several volts is likely between pins 3 and 4. To prevent interference with a 1 pA bias current, the board resistance will need to be in the order of gigaohms to have a minimum impact. The goal is to have the common mode potential on the guard ring, therefore reducing the stray voltage near the input pins to millivolts in normal applications. Any solder flux residue, excess moisture, humidity or board contamination will be detrimental to using the device in a high impedance input mode.

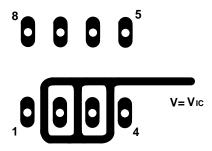


Figure 32 Bias Current Guarding for High Input Impedance Applications

Typical Application Circuits

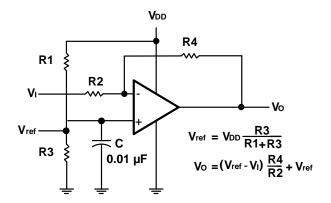


Figure 33 Inverting Amplifier With Voltage Reference

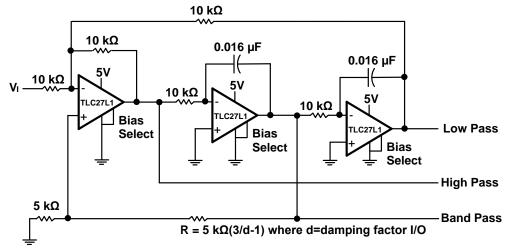
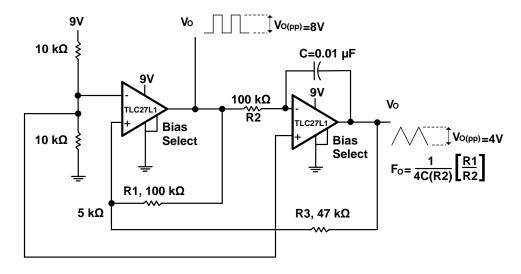



Figure 34 State Variable Filter

Figure 35 Single Supply Function Generator

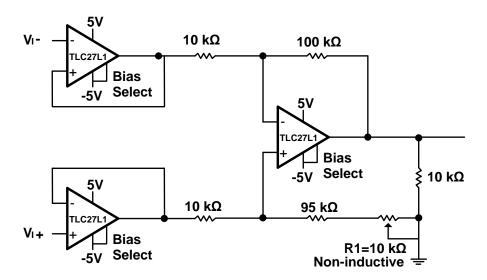


Figure 36 Low Power Instrumentation Amplifier

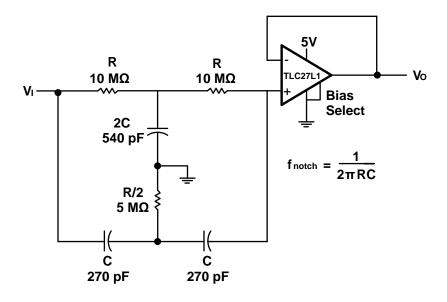


Figure 37 Single Supply Twin-T Notch Filter

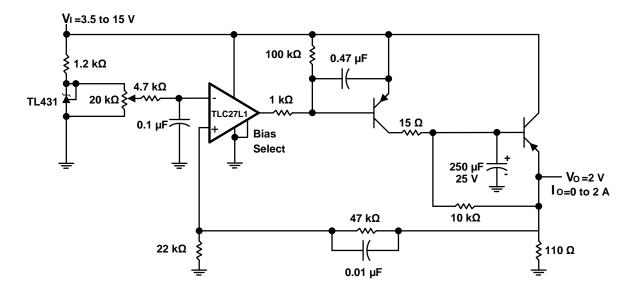


Figure 38 Power Supply

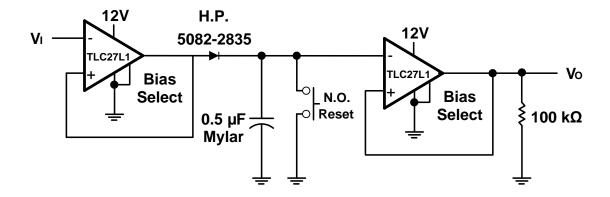


Figure 39 Positive Peak Detector

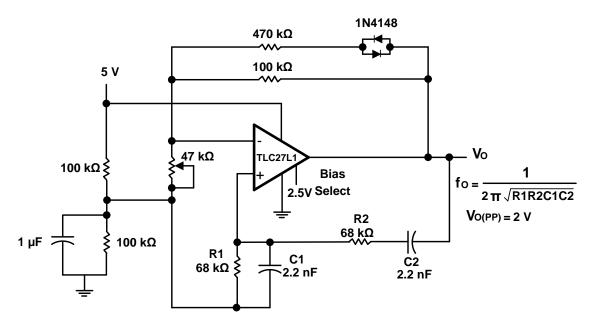


Figure 40 Wein Oscillator

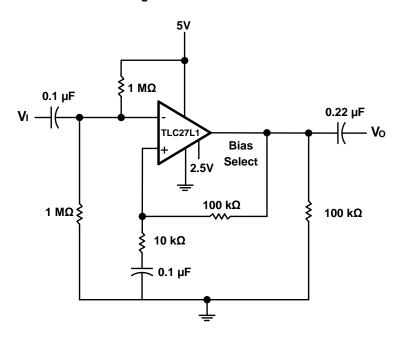
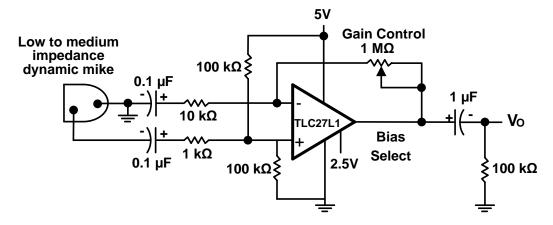



Figure 41 Single-Supply AC Amplifier

Figure 42 Microphone Preamplifier

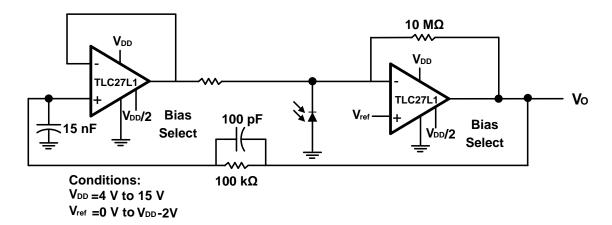
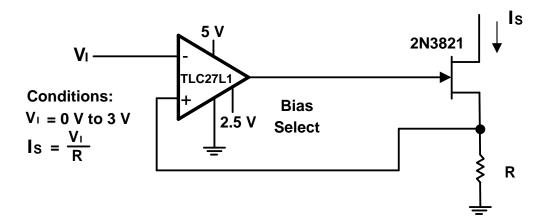
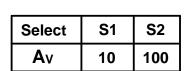




Figure 43 Photo-Diode Amplifier With Ambient Light Rejection

Figure 44 Precision Low-Current Sink

 $V_{DD} = 5 V \text{ to } 12 V$

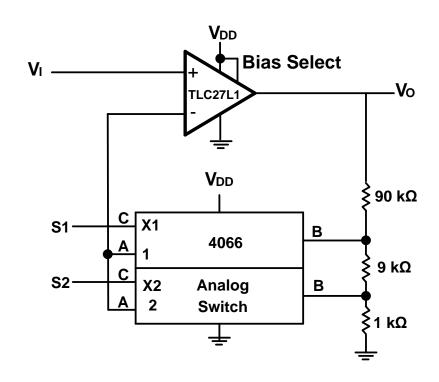
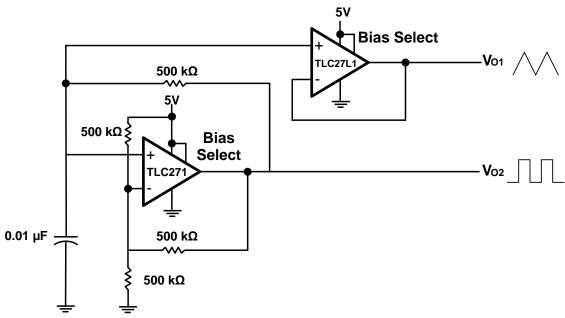



Figure 45 Amplifier With Digital Gain Selection

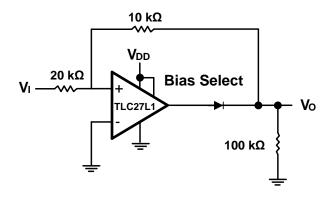
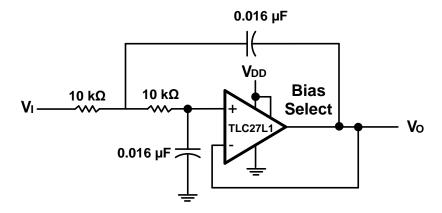
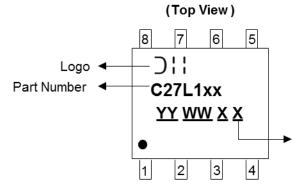



Figure 47 Full Wave Rectifier

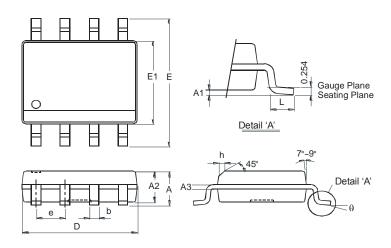
Nomalized to Fc= 1 kHz and R \perp = 10 k Ω


Figure 48 Two-Pole Low-Pass Butterworth Filter

Marking Information

SO-8

Part mark	Part number
C27L1C	TLC27L1CS
C27L1AC	TLC27L1ACS
C27L1BC	TLC27L1BCS
C27L1I	TLC27L1IS
C27L1AI	TLC27L1AIS
C27L1BI	TLC27L1BIS


YY: Year: 08, 09,10~ WW: Week: 01~52; 52 represents 52 and 53 week

X: Internal Code

Package Outline Dimensions

Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for the latest version.

Package Type: SO-8

	SO-8	
Dim	Min	Max
Α	-	1.75
A 1	0.10	0.20
A2	1.30	1.50
A3	0.15	0.25
b	0.3	0.5
D	4.85	4.95
Е	5.90	6.10
E1	3.85	3.95
е	1.27	Тур
h	-	0.35
L	0.62	0.82
θ	0°	8°
All Di	mensions	in mm

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the

failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2014, Diodes Incorporated

www.diodes.com