

PROTECTION PRODUCTS

Absolute Maximum Rating

Rating	Symbol	Value	Units
Peak Pulse Power ($t_p = 8/20\mu s$)	P _{pk}	500	Watts
Peak Forward Voltage (I _F = 1A, $t_p = 8/20\mu s$)	V _{FP}	1.5	V
Lead Soldering Temperature	T	260 (10 sec.)	°C
Operating Temperature	T,	-55 to +125	°C
Storage Temperature	T _{stg}	-55 to +150	°C

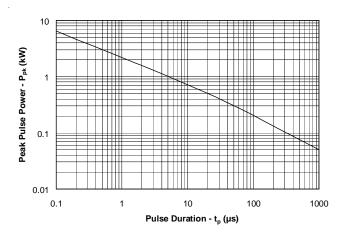
Electrical Characteristics (T=25°C)

SRDA05-4						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}				5	V
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA	6			V
Reverse Leakage Current	I _R	V _{RWM} = 5V, T=25°C			10	μA
Clamping Voltage	V _c	$I_{pp} = 1A, t_p = 8/20 \mu s$			9.8	V
Clamping Voltage	V _c	$I_{pp} = 10A, t_p = 8/20\mu s$			12	V
Clamping Voltage	V _c	I _{pp} = 25A, t _p = 8/20µs			20	V
Peak Pulse Current	I _{PP}	t _p = 8/20µs			25	А
Junction Capacitance	C _j	Between I/O pins and Ground V _R = OV, f = 1MHz		8	15	pF
		Between I/O pins V _R = OV, f = 1MHz		4		pF

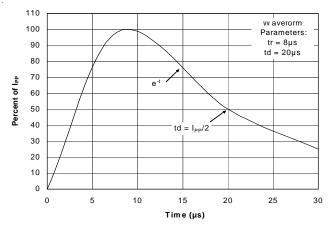
PROTECTION PRODUCTS

Electrical Characteristics (continued)

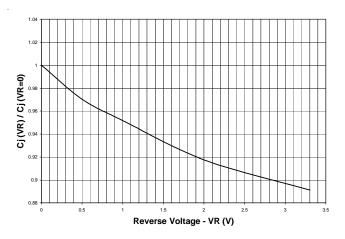
SEMTECH

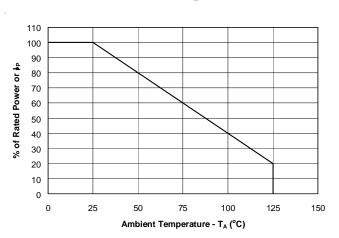

SRDA12-4

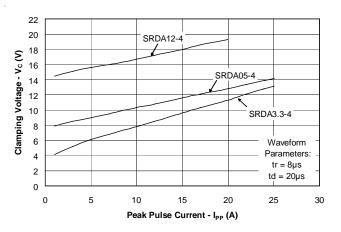
SRDA12-4						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Reverse Stand-Off Voltage	V _{RWM}				12	V
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA	13.3			V
Reverse Leakage Current	I _R	V _{RWM} = 12V, T=25°C			1	μA
Clamping Voltage	V _c	$I_{pp} = 1A, t_p = 8/20 \mu s$			17	V
Clamping Voltage	V _c	$I_{pp} = 10A, t_p = 8/20\mu s$			20	V
Clamping Voltage	V _c	$I_{pp} = 20A, t_p = 8/20\mu s$			25	V
Peak Pulse Current	I _{PP}	t _p = 8/20µs			20	А
Junction Capacitance	C _j	Between I/O pins and Ground V _R = OV, f = 1MHz		8	15	pF
		Between I/O pins V _R = OV, f = 1MHz		4		pF



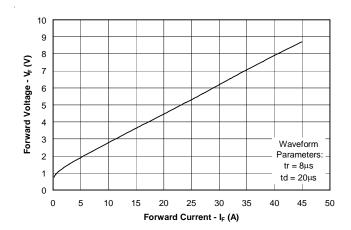
Typical Characteristics


Non-Repetitive Peak Pulse Power vs. Pulse Time





Variation of Capacitance vs. Reverse Voltage



Clamping Voltage vs. Peak Pulse Current

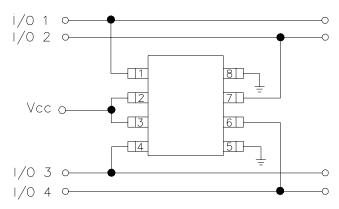
Forward Voltage vs. Forward Current

Power Derating Curve

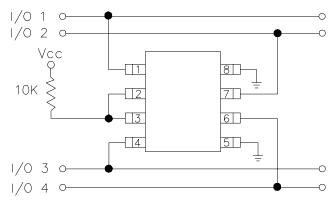
Applications Information

Device Connection Options for Protection of Four High-Speed Lines

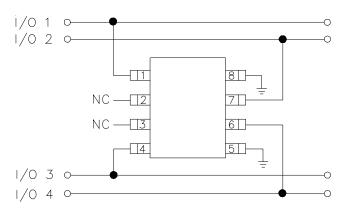
The SRDA TVS is designed to protect four data lines from transient overvoltages by clamping them to a fixed reference. When the voltage on the protected line exceeds the reference voltage (plus diode V_F) the steering diodes are forward biased, conducting the transient current away from the sensitive circuitry. Data lines are connected at pins 1, 4, 6 and 7. The negative reference is connected at pins 5 and 8. These pins should be connected directly to a ground plane on the board for best results. The path length is kept as short as possible to minimize parasitic inductance.


The positive reference is connected at pins 2 and 3. The options for connecting the positive reference are as follows:

- 1. To protect data lines and the power line, connect pins 2 & 3 directly to the positive supply rail (V_{cc}). In this configuration the data lines are referenced to the supply voltage. The internal TVS diode prevents over-voltage on the supply rail.
- 2. The SRDA can be isolated from the power supply by adding a series resistor between pins 2 and 3 and V_{cc} . A value of $10k\Omega$ is recommended. The internal TVS and steering diodes remain biased, providing the advantage of lower capacitance.
- 3. In applications where no positive supply reference is available, or complete supply isolation is desired, the internal TVS may be used as the reference. In this case, pins 2 and 3 are not connected. The steering diodes will begin to conduct when the voltage on the protected line exceeds the working voltage of the TVS (plus one diode drop).


ESD Protection With RailClamps

RailClamps are optimized for ESD protection using the rail-to-rail topology. Along with good board layout, these devices virtually eliminate the disadvantages of using discrete components to implement this topology. Consider the situation shown in Figure 1 where discrete diodes or diode arrays are configured for rail-to-rail protection on a high speed line. During positive duration ESD events, the top diode will be forward biased when the voltage on the protected line exceeds the reference voltage plus the V drop of the diode. For negative events, the bottom ^Fdiode will be biased


Data Line and Power Supply Protection Using Vcc as reference

Data Line Protection with Bias and Power Supply Isolation Resistor

Data Line Protection Using Internal TVS Diode as Reference

PROTECTION PRODUCTS

Applications Information (continued)

when the voltage exceeds the V of the diode. At first approximation, the clamping voltage due to the characteristics of the protection diodes is given by:

$$V_{c} = V_{cc} + V_{F}$$
 (for positive duration pulses)
 $V_{c} = -V_{F}$ (for negative duration pulses)

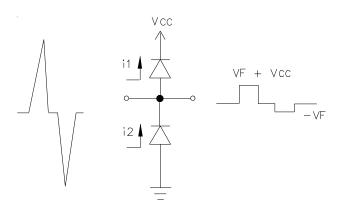
However, for fast rise time transient events, the effects of parasitic inductance must also be considered as shown in Figure 2. Therefore, the actual clamping voltage seen by the protected circuit will be:

 $V_{c} = V_{cc} + V_{F} + L_{P} \frac{di}{esd} / dt$ (for positive duration pulses)

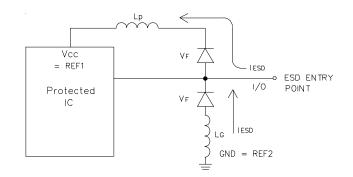
 $V_{c} = -V_{F} - L_{G} \frac{di}{ESD} / dt$ (for negative duration pulses)

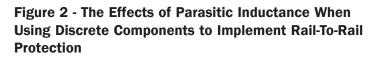
ESD current reaches a peak amplitude of 30A in 1ns for a level 4 ESD contact discharge per IEC 61000-4-2. Therefore, the voltage overshoot due to 1nH of series inductance is:

$$V = L_{p} \frac{di}{dt} / dt = 1X10^{-9} (30 / 1X10^{-9}) = 30V$$


Example:

Consider a V = 5V, a typical V of 30V (at 30A) for the steering diode and a series trace inductance of 10nH. The clamping voltage seen by the protected IC for a positive 8kV (30A) ESD pulse will be:


$$V_{c} = 5V + 30V + (10nH X 30V/nH) = 335V$$


This does not take into account that the ESD current is directed into the supply rail, potentially damaging any components that are attached to that rail. Also note the high V of the discrete diode. It is not uncommon for the V $\frac{1}{6}$ f discrete diodes to exceed the damage threshold of the protected IC. This is due to the relatively small junction area of typical discrete components. It is also possible that the power dissipation capability of the discrete diode will be exceeded, thus destroying the device.

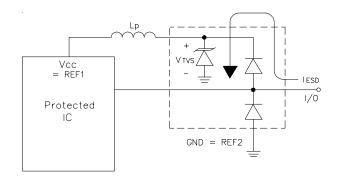

The RailClamp is designed to overcome the inherent disadvantages of using discrete signal diodes for ESD suppression. The RailClamp's integrated TVS diode helps to mitigate the effects of parasitic inductance in

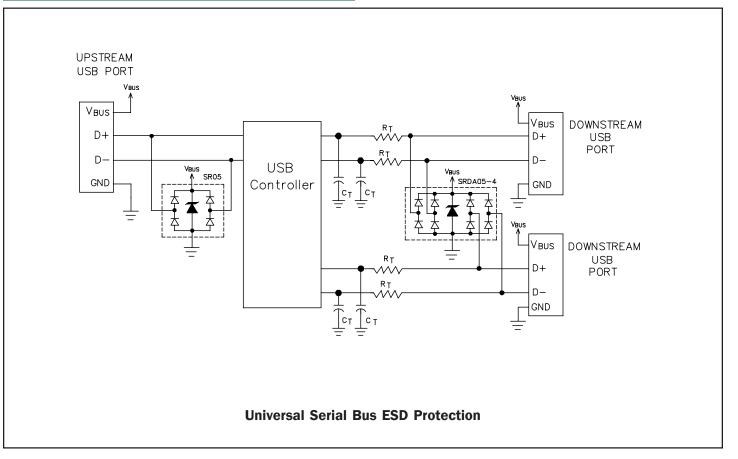
Figure 1 - "Rail-To-Rail" Protection Topology (First Approximation)

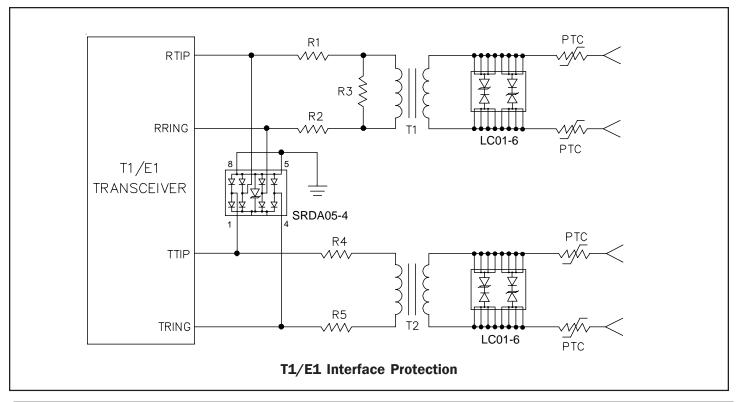
Applications Information (continued)

the power supply connection. During an ESD event, the current will be directed through the integrated TVS diode to ground. The total clamping voltage seen by the protected IC due to this path will be:

$$V_{C} = V_{F(RailClamp)} + V_{TVS}$$

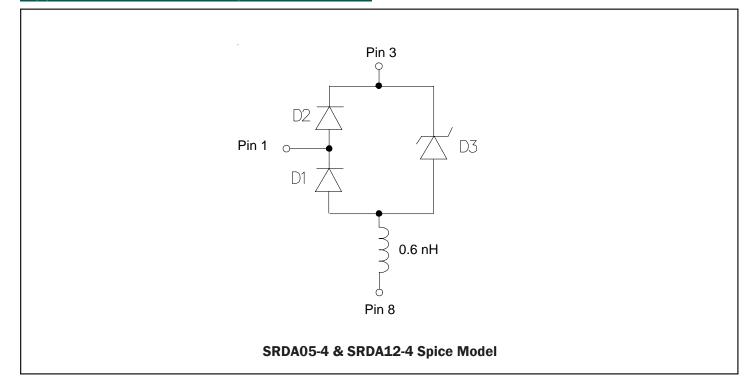
This is given in the data sheet as the rated clamping voltage of the device. For an SRDA05-4 the typical clamping voltage is <16V at I =30A. The diodes internal to the RailClamp are Plow capacitance, fast switching devices that are rated to handle high transient currents and maintain excellent forward voltage characteristics.


Using the RailClamp does not negate the need for good board layout. All other inductive paths must be considered. The connection between the positive supply and the SRDA and from the ground plane to the SRDA must be kept as short as possible. The path between the SRDA and the protected line must also be minimized. The protected lines should be routed directly to the SRDA. Placement of the SRDA on the PC board is also critical for effective ESD protection. The device should be placed as close as possible to the input connector. The reason for this is twofold. First, inductance resists change in current flow. If a significant inductance exists between the connector and the TVS, the ESD current will be directed elsewhere (lower resistance path) in the system. Second, the effects of radiated emissions and transient coupling can cause upset to other areas of the board even if there is no direct path to the connector. By placing the TVS close to the connector it will divert the ESD current immediately and absorb the ESD energy before it can be coupled into nearby traces.


7

PROTECTION PRODUCTS

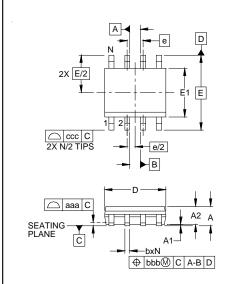
Typical Applications

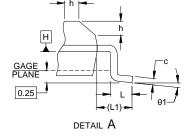


© 2007 Semtech Corp.

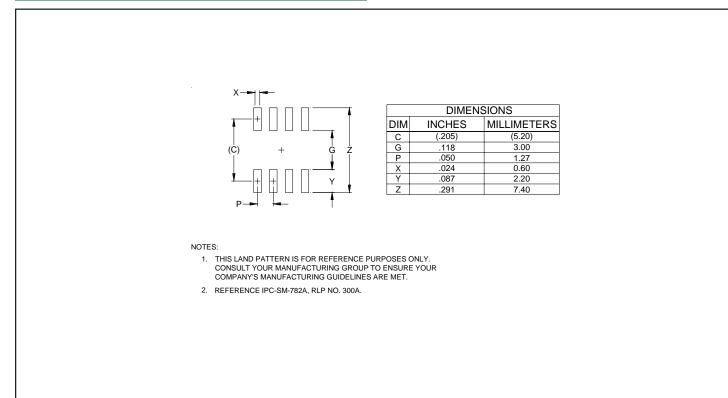
PROTECTION PRODUCTS

Applications Information - Spice Model




	SRDA05-4 & SRDA12-4 Spice Parameters								
Parameter	Unit	D1 (LCRD)	D2 (LCRD)	SRDA05-4 D3 (TVS)	SRDA12-4 D3 (TVS)				
IS	Amp	2.092E-11	2.156E-12	1.4E-14	1.43E-14				
BV	Volt	680	240	6.70	15				
LA	Volt	0.62	0.64	.56	.78				
RS	Ohm	0.180	0.155	0.56	0.40				
IBV	Amp	1.0 E-3	1.0 E-3	1.0 E-3	1.0 E-3				
CJO	Farad	5.2E-12	6.2E-12	307E-12	71E-12				
TT	sec	2.541E-9	2.541E9	2.541E-9	2.541E-9				
М		0.058	0.058	0.247	0.246				
N		1.1	1.1	1.1	1.1				
EG	eV	1.11	1.11	1.11	1.11				

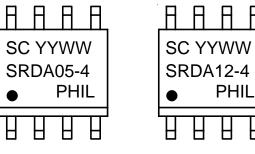
Outline Drawing - SO-8



DIMENSIONS								
DIM	11	VCHE	S	MILLIMETERS				
וויט	MIN	NOM	MAX	MIN	NOM	MAX		
Α	.053	-	.069	1.35	-	1.75		
A1	.004	-	.010	0.10	-	0.25		
A2	.049	-	.065	1.25	-	1.65		
b	.012 -		.020	0.31	-	0.51		
С	.007 -		.010	0.17	-	0.25		
D	.189	.193	.197	4.80	4.90	5.00		
E1	.150	.154	.157	3.80	3.90	4.00		
Е	.2	236 BS	С	6	.00 BS	С		
е	.()50 BS	С	1.27 BSC				
h	.010	-	.020	0.25	-	0.50		
L	.016	.028	.041	0.40	0.72	1.04		
L1		(.041)		(1.04)				
Ν		8		8				
θ1	0°	-	8°	0°	-	8°		
aaa		.004		0.10				
bbb		.010		0.25				
CCC		.008			0.20			

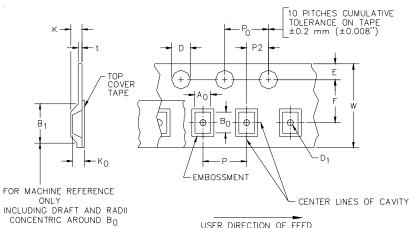
NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-
- DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.
- 4. REFERENCE JEDEC STD MS-012, VARIATION AA.

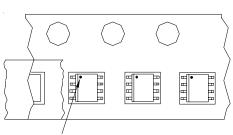

Land Pattern - SO-8

PROTECTION PRODUCTS

Marking Diagram


Ordering Information

Part Number	Lead Finish	Qty per Reel	Reel Size
SRDA05-4.TB	SnPb	500	7 Inch
SRDA05-4.TBT	Matte Sn	500	7 Inch
SRDA12-4.TB	SnPb	500	7 Inch
SRDA12-4.TBT	Matte Sn	500	7 Inch


Note: Lead-free devices are RoHS/WEEE Compliant

Note: YYWW = Date Code

Tape and Reel Specification

USER DIRECTION OF FEED

Pin 1 Location

User Direction of feed

Device Orientation in Tape

AO	В0	КО	
6.50 +/-0.20 mm	5.40 +/-0.20 mm	2.00 +/-0.10 mm	

Tape Width	B, (Max)	D	D1	E	F	K (MAX)	Ρ	PO	P2	T(MAX)	w
12 mm	8.2 mm	1.5 + 0.1 mm - 0.0 mm	1.5 mm	1.750±.10 mm	5.5±0.05 mm	4.5 mm	4.0±0.1 mm	4.0±0.1 mm	2.0±0.05 mm	0.4 mm	12.0 mm ±0.3

Contact Information

Semtech Corporation **Protection Products Division** 200 Flynn Road, Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804