Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (IIK)	
@V _{IN} < -0.5V	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 6V$, $V_{CC} = GND$	+20mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23–5	200 mW
SC70–5	150 mW

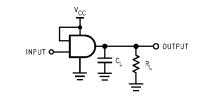
Recommended Operating Conditions (Note 2)

()	
Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V _{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t_r, t_f)	
$V_{CC} = 1.8V, 2.5V \pm 0.2V$	0 ns/V to 20 ns/V
$V_{CC} = 3.3 V \pm 0.3 V$	0 ns/V to 10 ns/V
$V_{CC} = 5.0 V \pm 0.5 V$	0 ns/V to 5 ns/V
Thermal Resistance (θ_{JA})	
SOT23–5	300°C/W
SC70–5	425°C/W

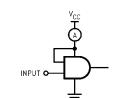
Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Symbol	Parameter	V_{CC} $T_A = 25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
		(V)	Min	Min Typ Max		Min	Max	onits	Conditions	
VIH	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Input Voltage	1.65 to 1.95			$0.25 V_{CC}$		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2		V	$V_{IN}=V_{IH}$	$I_{OH} = -100 \ \mu A$
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.5	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$
		3.0	2.4	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.9	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1			
		1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1	V	$V_{IN}=V_{IL}$	$I_{OL} = 100 \ \mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V		$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μΑ	V _{IN} = 5.5V,	GND
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OU}	_T = 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			2.0		20	μA	V _{IN} = 5.5V,	GND

www.fairchildsemi.com

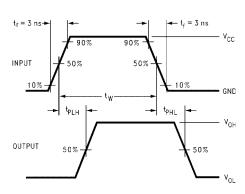
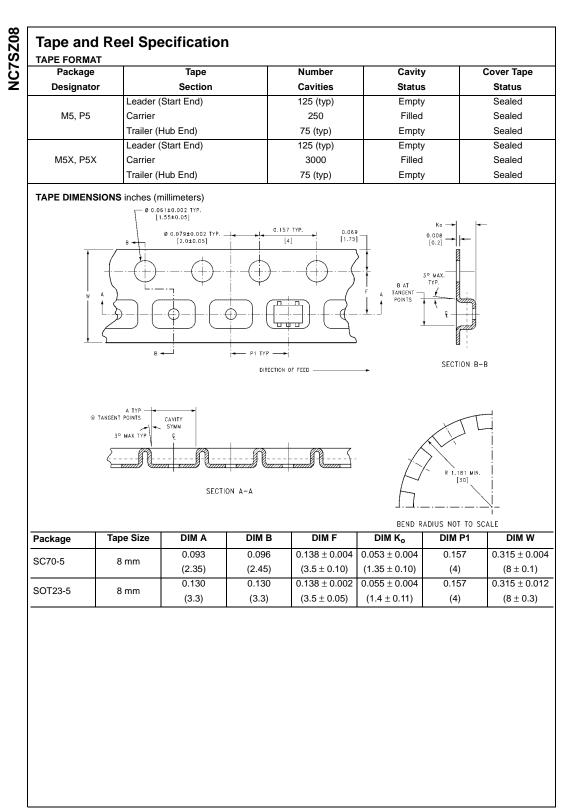
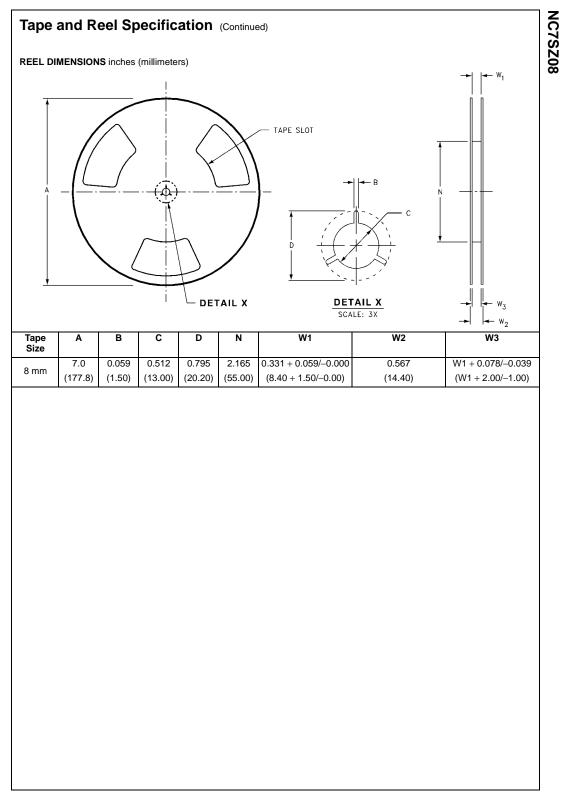

Symbol	Parameter	V _{cc}	$T_A = +25^{\circ}C$			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Fig. NO.
t _{PLH} ,	Propagation Delay	1.65	2.0	6.3	12	2.0	12.7			
t _{PHL}		1.8	2.0	5.2	10	2.0	10.5			
		2.5 ± 0.2	0.8	3.4	7	0.8	7.5	ns	$C_L = 15 \text{ pF},$	Figures
		$\textbf{3.3}\pm\textbf{0.3}$	0.5	2.6	4.7	0.5	5.0		$R_L = 1 M\Omega$., 0
		5.0 ± 0.5	0.5	2.2	4.1	0.5	4.4			
t _{PLH} ,	Propagation Delay	3.3 ± 0.3	1.5	3.3	5.2	1.5	5.5	ns	$C_L = 50 \text{ pF},$	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.7	4.5	0.8	4.8	115	$R_L = 500\Omega$	Ĩ, 3
CIN	Input Capacitance	0		4				pF		
C _{PD}	Power Dissipation Capacitance	3.3		20				pF	(Note 2)	Figure 2
		5.0		25				pн	(Note 3)	Figure 2

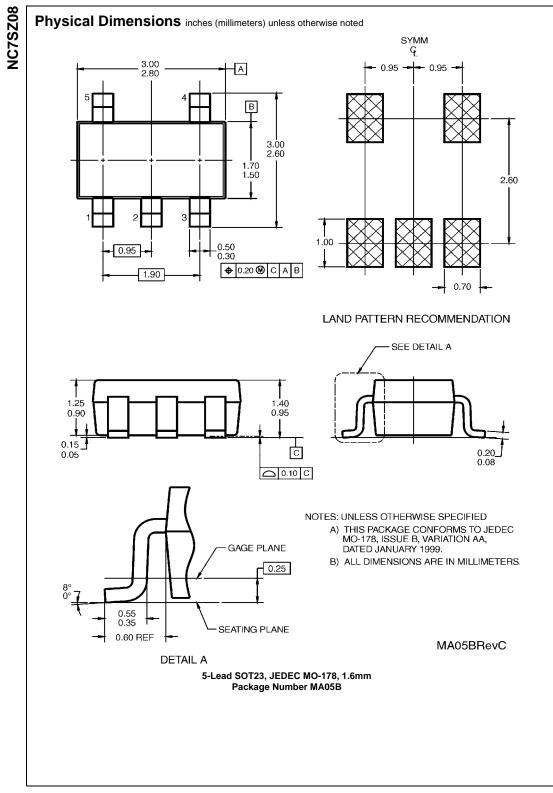
Note 3: CPD is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static)$

AC Loading and Waveforms

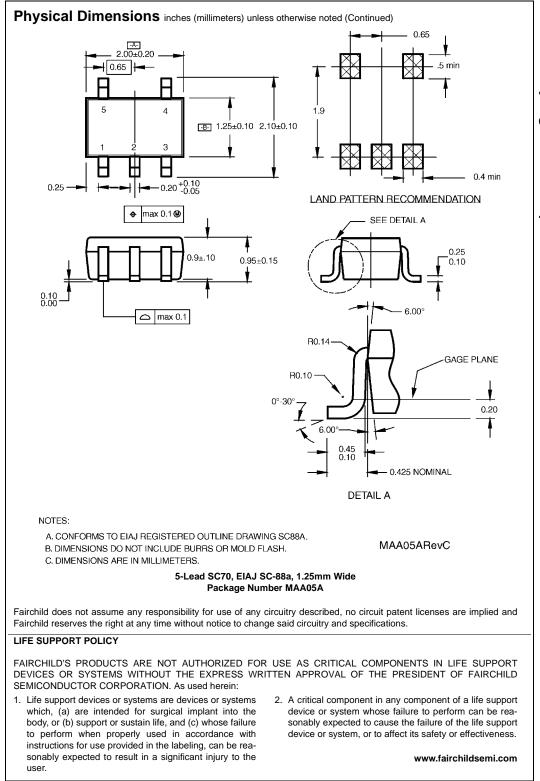
 C_L includes load and stray capacitance Input PRR = 1.0 MHz, t_w = 500 ns $\mbox{FIGURE 1. AC Test Circuit}$

INPUT o-Input = Ac Waveform; t_r = t_r = 1.8 ns; PRR = 10 MHz; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit


FIGURE 3. AC Waveforms

www.fairchildsemi.com


Downloaded from Arrow.com.

www.fairchildsemi.com

NC7SZ08 TinyLogic™ UHS 2-Input AND Gate

7

www.fairchildsemi.com