

5.2kVDC Isolated 2W DC-DC Converters

OUTPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Rated Power ²	T _A =-40°C to 85°C			2	W
Voltage Set Point Accuracy	See tolerance envelopes				
Line regulation	High Vin to low Vin		1.0	1.2	%/%

ISOLATION CHA	RACTERISTICS					
Parameter		Conditions	Min.	Тур.	Max.	Units
Isolation test voltage		Flash tested for 1 second	5200			VDC
Resistance		Viso= 500VDC		1		GΩ
Isolation capacitar	nce			4		pF
Continuous barrier withstand voltage		Non-safety barrier application			2400	V
	UL60950-1	Basic/supplementary			200	
Safety standard	ANSI/AAMI ES60601-1	1 M00P			200	Vrms

GENERAL CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Switching frequency	All types		45		kHz

TEMPERATURE CHARACTERIS	STICS				
Parameter	Conditions	Min.	Тур.	Max.	Units
Specification	All output types (see safety approval section for limitations)	-40		85	
Storage		-55		125	
Case Temperature above ambient	MEJ2S0509SC, MEJ2S0512SC, MEJ2S0515SC, MEJ2S1209SC, MEJ2x1212SC, MEJ2S1215SC, MEJ2S1509SC, MEJ2S1512SC, MEJ2S1515SC		27		°C
	MEJ2S0503SC, MEJ2S0505SC, MEJ2S1203SC, MEJ2S1205SC, MEJ2x1505SC, MEJ2S1515SC, MEJ2D0512SC, MEJ2D0515SC, MEJ2D1209SC, MEJ2D1215SC		30		
	MEJ2S0305SC, MEJ2S0303SC, MEJ2S1203SC, MEJ2D0505SC, MEJ2D0509SC, MEJ2D1509SC, MEJ2D1512SC		33		
	MEJ2D01203SC, MEJ2D0503SC		37		
Cooling	Free air convection				

ABSOLUTE MAXIMUM RATINGS	
Short-circuit protection	10 minutes
Lead temperature 1mm from case for 10 seconds	260°C
Wave Solder	Wave Solder profile not to exceed the profile recommended in IEC 61760-1 Section 6.1.3. Please refer to application notes for further information.
Input voltage V _{IN} , MEJ2x03xxSC	5V
Input voltage V _{IN} , MEJ2x05xxSC	7V
Input voltage V _{IN} , MEJ2x12xxSC	15V
Input voltage V _{IN} , MEJ2x15xxSC	18V

5.2kVDC Isolated 2W DC-DC Converters

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions MEJ2 series of DC-DC converters are all 100% production tested at their stated isolation voltage. This is 5.2kVDC for 1 second.

The MEJ2 series is recognised by Underwriters Laboratory, please see safety approval section for more information. When the insulation in the MEJ2 series is not used as a safety barrier, i.e. provides functional isolation only, continuous or switched voltages across the barrier up to 2.4kV are sustainable. This is established by measuring the partial discharge Inception voltage in accordance with IEC 60270. Please contact Murata for further information.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

SAFETY APPROVAL

ANSI/AAMI ES60601-1

The MEJ2 series have recognised by Underwriters Laboratory (UL) to ANSI/AAMI ES60601-1 and provides 1 MOOP (Means Of Operator Protection) based upon a working voltage of 200 Vrms max and 280 Vpk max., between Primary and Secondary and between Primary and its Enclosure, in a maximum ambient temperature of 85°C and/or case temperature limit of 130°C (case temperature measured on the face opposite the pins).

File Number E202895 applies.

UL60950

The MEJ2 series have been recognised by Underwriters Laboratory (UL) to UL60950 for basic/supplementary insulation to a working voltage of 200Vrms in a maximum ambient temperature of 85°C and/or case temperature limit of 130°C (case temperature measured on the face opposite the pins).

File number E151252 applies. Creepage and clearance 2mm Working altitude 4000m

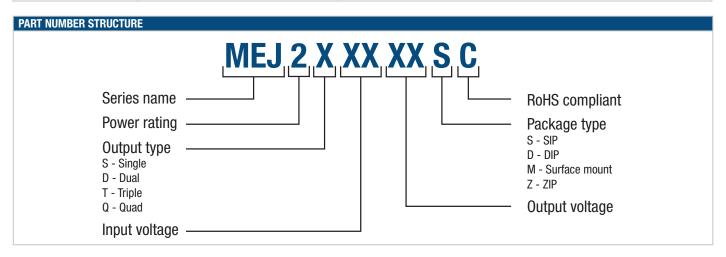
FUSING

The MEJ2 Series of converters are not internally fused so to meet the requirements of UL an anti-surge input line fuse should always be used with ratings as defined below.

MEJ2x03xxxC: 2A MEJ2x05xxxC: 2A MEJ2x12xxxC: 750mA MEJ2x15xxxC: 750mA

All fuses should be UL recognised and rated to at least the maximum allowable DC input voltage.

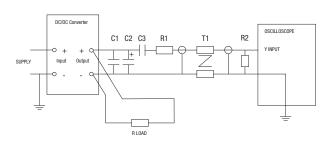
ROHS COMPLIANCE INFORMATION


This series is compatible with RoHS soldering systems with a peak wave solder temperature of 260°C for 10 seconds. Please refer to application notes for further information. The pin termination finish on this product series is Tin Plate, Hot Dipped over Matte Tin with Nickel Preplate. The series is backward compatible with Sn/Pb soldering systems. For further information, please visit www.murata-ps.com/rohs

5.2kVDC Isolated 2W DC-DC Converters

The following tests have been co	onducted on this product series, as part of our c	design verification process. The datasheet characteristics specify user operating conditions for this
series, please contact Murata if t	further information about the tests is required.	itsign vermeation process. The datasticet characteristics specify user operating conditions for this
Test	Standard	Condition
Temperature cycling	MIL-STD-883 Method 1010, Condition B	10 cycles between two chambers set to achieve -55°C and +125°C. The dwell time shall not b less than 10min.
Humidity bias	JEDEC JESD22-A101	$85^{\circ}\text{C} \pm 2^{\circ}\text{C}$, $85\% \pm 5\%$ R.H. for >1000 hours.
Storage life	JEDEC JESD22-A103, Condition A	125°C +10/-0°C for ≥1000 hours.
Vibration	MIL-STD-883 Method 2007, Condition A	1.5mm pk-pk / 20g pk min, 20-2000Hz, 4 sweeps in each of 3 mutually perpendicular axis at oct/min.
Shock	MIL-STD-883 Method 2002, Condition A	500g 1.0ms half sine, 5 shocks in each direction of 3 mutually perpendicular axes.
ESD	JESD22-A114	HBM Testing Standard at 3 stress levels; 2.0kV, 4.0kV and 8.0kV.
Bump	IEC Class 4M5 of ETS 300 019-2-4	Shock Spectrum Type II, 6mS duration, 250m/s ² 500 bumps in 6 directions.
Solderability	IPC/ECA J-STD-002, Test A and A1	SnPb (Test A) For leaded solderability the parts are conditioned in a steam ager for 8 hours ± 15 min. at a temperature of $93\pm3^{\circ}$ C. Dipped in solder at 245° C $\pm 5^{\circ}$ C for $5+0/-0.5$ seconds. Pb-free (Test A1) For lead free solderability the parts are conditioned in a steam ager for 8 hours \pm 15 min. at a temperature of $93\pm3^{\circ}$ C. Dipped in solder at 255° C $\pm5^{\circ}$ C for $5+0/-0.5$ seconds.
Solder heat .	JEDEC JESD22-B106	The test sample is subjected to a molten solder bath at 260 $\pm 5^{\circ}$ C for 10 seconds (96SC tin/silver/copper).
Solder heat (hand)	MIL-STD-202 Method 210, Condition A	The soldering iron is heated to $350^{\circ}\text{C} \pm 10^{\circ}\text{C}$ and applied to the terminations for a duration of to 5 seconds.
Solvent cleaning	Resistance to cleaning agents.	Solvent – Novec 71IPA & Topklean EL-20A. Pulsed ultrasonic immersion 45°C- 65°C.
Solvent Resistance	MIL-STD-883 Method 2015	Separate samples subjected to solvent A, solvent B and solvent D.
Lead Integrity (Adhesion)	MIL-STD-883 Method 2025	Leads are bent through 90° until a fracture occurs.
Lead Integrity (Fatigue)	MIL-STD-883 Method 2004, condition B ₂	The leads are bent to an angle of 15°. Each lead is subjected to 3 cycles.
Lead Integrity (Tension/Pull)	MIL-STD-883 Method 2004, Condition A	Pull of 0.227kg applied for 30 seconds. The force is then increased until the pins snap.

5.2kVDC Isolated 2W DC-DC Converters


CHARACTERISATION TEST METHODS

Ripple & Noise Characterisation Method

Ripple and noise measurements are performed with the following test configuration.

C1	1μF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC-DC converter
C2	$10\mu F$ tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC-DC converter with an ESR of less than $100 \text{m}\Omega$ at 100kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450Ω resistor, carbon film, ±1% tolerance
R2	50Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC-DC converter. Connections should be made via twisted wires
Measured va	lues are multiplied by 10 to obtain the specified values.

Differential Mode Noise Test Schematic

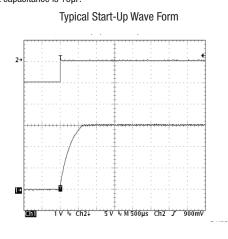
APPLICATION NOTES

Minimum load

The minimum load to meet datasheet specification is 10% of the full rated load across the specified input voltage range. Lower than 10% minimum loading will result in an increase in output voltage, which may rise to typically double the specified output voltage if the output load falls to less than 5%.

Gate Drive Applications Advisory Note

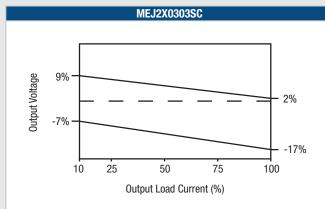
For general guidence for product usage in gate drive applications please refer to "gate drive application notes".

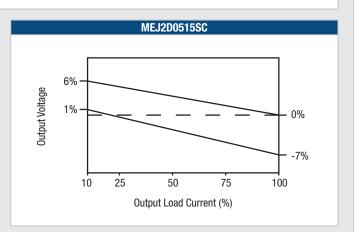

Capacitive loading and start up

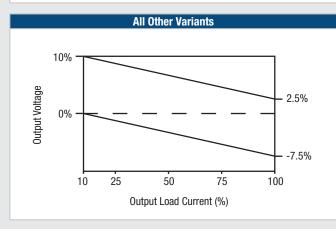
Typical start up times for this series, with a typical input voltage rise time of $2.2\mu s$ and output capacitance of $10\mu F$, are shown in the table below. The product series will start into a capacitance of $47\mu F$ with an increased start time, however, the maximum recommended output capacitance is $10\mu F$.

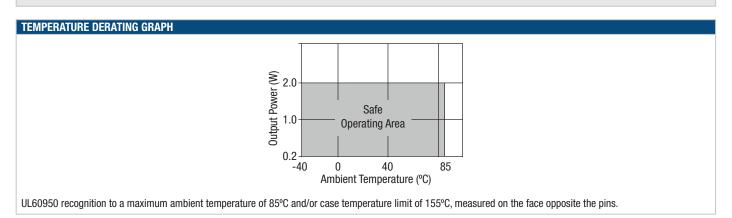
	Start-up time		
	μs		
MEJ2S0303SC	0.89		
MEJ2S0305SC	1.89		
MEJ2S0503SC	1.08		
MEJ2S0505SC	2.04		
MEJ2S0509SC	6.5		
MEJ2S0512SC	8.29		
MEJ2S0515SC	11.4		
MEJ2S1203SC	0.73		
MEJ2S1205SC	1.61		
MEJ2S1209SC	4.04		
MEJ2S1212SC	5.51		
MEJ2S1215SC	7.61		
MEJ2S1505SC	1.33		

	Start-up time	
	μs	
MEJ2S1509SC	3.37	
MEJ2S1512SC	4.47	
MEJ2S1515SC	6.05	
MEJ2D0503SC	1.57	
MEJ2D0505SC	1.79	
MEJ2D0509SC	9.32	
MEJ2D0512SC	14.9	
MEJ2D0515SC	20.84	
MEJ2D1203SC	1.03	
MEJ2D1205SC	2.51	
MEJ2D1209SC	6.46	
MEJ2D1212SC	9.94	
MEJ2D1215SC	14.54	

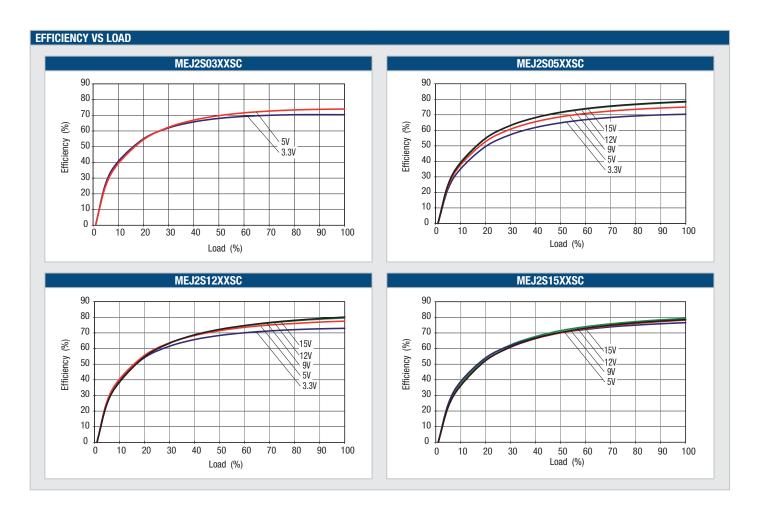

	Start-up time
	μs
MEJ2D1505SC	1.79
MEJ2D1509SC	5.16
MEJ2D1512SC	7.04
MEJ2D1515SC	10.48



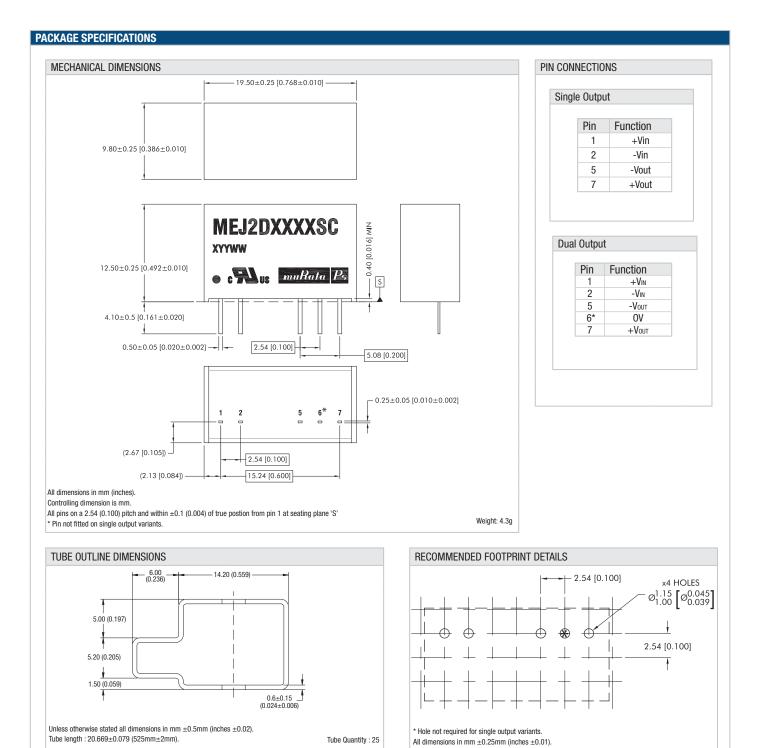

5.2kVDC Isolated 2W DC-DC Converters


TOLERANCE ENVELOPES

The voltage tolerance envelope shows typical load regulation characteristics for this product series. The tolerance envelope is the maximum output voltage variation due to changes in output loading.



5.2kVDC Isolated 2W DC-DC Converters



5.2kVDC Isolated 2W DC-DC Converters

5.2kVDC Isolated 2W DC-DC Converters

5.2kVDC Isolated 2W DC-DC Converters

DISCLAIMER

Unless otherwise stated in the datasheet, all products are designed for standard commercial and industrial applications and NOT for safety-critical and/or life-critical applications.

Particularly for safety-critical and/or life-critical applications, i.e. applications that may directly endanger or cause the loss of life, inflict bodily harm and/or loss or severe damage to equipment/property, and severely harm the environment, a prior explicit written approval from Murata is strictly required. Any use of Murata standard products for any safety-critical, life-critical or any related applications without any prior explicit written approval from Murata shall be deemed unauthorised use.

These applications include but are not limited to:

- Aircraft equipment
- Aerospace equipment
- Undersea equipment
- Power plant control equipment
- Medical equipment
- Transportation equipment (automobiles, trains, ships, etc.)
- Traffic signal equipment
- Disaster prevention / crime prevention equipment
- Data Processing equipment

Murata makes no express or implied warranty, representation, or guarantee of suitability, fitness for any particular use/purpose and/or compatibility with any application or device of the buyer, nor does Murata assume any liability whatsoever arising out of unauthorised use of any Murata product for the application of the buyer. The suitability, fitness for any particular use/purpose and/or compatibility of Murata product with any application or device of the buyer remain to be the responsibility and liability of the buyer.

Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards that anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify and hold Murata, its affiliated companies, and its representatives harmless against any damages arising out of unauthorised use of any Murata products in any safety-critical and/or life-critical applications.

Remark: Murata in this section refers to Murata Manufacturing Company and its affiliated companies worldwide including, but not limited to, Murata Power Solutions.

This product is subject to the following <u>operating requirements</u> and the <u>Life and Safety Critical Application Sales Policy</u>:

Refer to: https://www.murata.com/en-eu/products/power/requirements

Murata Power Solutions (Milton Keynes) Ltd. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein on timply the grandene therewith. Specifications are subject to change without notice.

www.murata.com

KDC_MEJ2_K01 Page 10 of 10