ABSOLUTE MAXIMUM RATINGS

IN, OUT, SHDN, ADJ to GND0.3V to +6V	Operating Temperature Range40°C to +125°C
Output Short Circuit to GND or IN	Junction Temperature+150°C
Continuous Power Dissipation (T _A = +70°C)	Storage Temperature Range65°C to +150°C
5-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW	Lead Temperature (soldering, 10s)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX6037_12 (Vout = 1.25V)

(VIN = VSHDN = +3V, IOUT = 0, COUT = 0.1 µF, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT							
			MAX6037A_12 (0.2%)	1.2475	1.250	1.2525	
Output Voltage	Vout	T _A = +25°C	MAX6037B_12 (0.3%)	1.2462	1.250	1.2538	3 V
			MAX6037C_12 (0.5%)	1.2438	1.250	1.2563	
Output-Voltage Temperature	TCV _{OUT}	MAX6037A_12			6	25 nnm/°C	20m/0C
Coefficient (Note 2, 4)	10,001	MAX6037B/C_12			6	50	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$2.5V \le V_{\text{IN}} \le 5.5V$			0.0006	0.0096	%/V
		Sourcing: 0 ≤ I _{OU}	r≤1mA		0.008	0.072	
Load Regulation	A\/\0.17/A\\0.17	Sourcing: 1mA ≤ I	OUT ≤ 5mA		0.006	0.072	%/mA
Load negulation	ΔV _{OUT} /Δl _{OUT}	Sinking: -1mA ≤ IC	OUT ≤ 0		0.025	0.12	/o/III/A
		Sinking: -5mA ≤ IC		0.014	0.12		
OUT Short-Circuit Current	loo	Short to GND			16		mA
OOT SHOIT-CITCUIT CUITERIT	Isc	Short to IN			32		IIIA
Thermal Hysteresis (Note 3)	ΔV _{OUT} /cycle				485		ppm
Long-Term Stability	ΔV _{OUT} /time	1000h at T _A = +25°C			133		ppm
DYNAMIC							
Noise Voltage	OOLIT	f = 0.1Hz to $10Hz$			6		μV _{P-P}
Troise voitage	eout	f = 10Hz to $1kHz$			15		μV _{RMS}
		To V _{OUT} = 0.1%	Initial power-up		360		
Turn-On Settling Time	t _R	of final value, C _{OUT} = 0.02μF	V _{IN} = 3V, SHDN pulled from low to high		75		μs
Output Impedance when Disabled	Z _{OUT}	V _{IN} = 3V, V SHDN =	= 0V		125		kΩ
Capacitive-Load Stability Range (Note 4)	Соит			0.02		1	μF
INPUT							
Supply Voltage Range	VIN	Guaranteed by lin-	e regulation test	2.5		5.5	V
Quiescent Supply Current	I _{IN}				190	275	μΑ
Shutdown Supply Current	ISHDN	V SHDN = 0V			0.05	500	nA

ELECTRICAL CHARACTERISTICS—MAX6037_12 (Vout = 1.25V) (continued)

 $(V_{IN} = V_{\overline{SHDN}} = +3V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
SHUTDOWN (SHDN)						
Logic-High Input Voltage	V _{ENH}	$2.5V \le V_{\text{IN}} \le 5.5V$	2.0			V
Logic-Low Input Voltage	VENL	$2.5V \le V_{IN} \le 5.5V$			0.7	V
Logic-High Input Current	IENH	$2.5V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = V_{IN}$	-1000	0.15	+1000	nA
Logic-Low Input Current	I _{ENL}	$2.5V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = 0V$	-1000	0.05	+1000	nA

ELECTRICAL CHARACTERISTICS—MAX6037_21 (Vout = 2.048V)

 $(V_{IN} = V_{\overline{SHDN}} = +3V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT				•			
			MAX6037A_21 (0.2%)	2.0439	2.0480	2.0521	
Output Voltage	V _{OUT}	$T_A = +25^{\circ}C$	MAX6037B_21 (0.3%)	2.0418	2.0480	2.0542	V
			MAX6037C_21 (0.5%)	2.0378	2.0480	2.0582	1
Output-Voltage Temperature	TCV _{OUT}	MAX6037A_21			6	25	nnm/0C
Coefficient (Note 2, 4)	100001 N	MAX6037B/C_21			6	50	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$2.5V \le V_{IN} \le 5.5V$			0.0008	0.0107	%/V
		Sourcing: 0 ≤ I _{OU}	T≤1mA		0.006	0.044	
Lood Dogulation	A\/ \(\) \(Sourcing: 1mA ≤ I	OUT ≤ 5mA		0.004	0.044	%/mA
Load Regulation	ΔV _{OUT} /Δl _{OUT}	Sinking: -1mA ≤ I(OUT ≤ 0		0.02	0.195	76/IIIA
		Sinking: -5mA ≤ I _{OUT} ≤ -1mA			0.01	0.195	
OUT Short-Circuit Current	Isc	Short to GND			16		mA
OUT SHOIL-OILCUIT CUITEIIL	isc	Short to IN		32		IIIA	
Thermal Hysteresis (Note 3)	ΔV _{OUT} /cycle			458		ppm	
Long-Term Stability	ΔV_{OUT} /time	1000h at $T_A = +25$		133		ppm	
DYNAMIC							
Noise Voltage	00117	f = 0.1Hz to 10Hz			11		μV _{P-P}
Noise voilage	eout	f = 10Hz to $1kHz$			25		μV _{RMS}
		To V _{OUT} = 0.1%	Initial power-up		2.1		
Turn-On Settling Time	t _R	of final value, COUT = 0.02µF	V _{IN} = 3V, SHDN pulled from low to high		2		ms
Output Impedance when Disabled	Z _{OUT}	V _{IN} = 3V, V SHDN :	= 0V		205		kΩ
Capacitive-Load Stability Range (Note 4)	Соит			0.02		1	μF
INPUT							
Supply Voltage Range	VIN	Guaranteed by lin	e regulation test	2.5		5.5	V
Quiescent Supply Current	I _{IN}				190	275	μΑ
Shutdown Supply Current	ISHDN	V SHDN = 0V			0.05	500	nA
	1	L					<u> </u>

ELECTRICAL CHARACTERISTICS—MAX6037_21 (VOUT = 2.048V) (continued)

 $(V_{IN} = V_{\overline{SHDN}} = +3V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SHUTDOWN (SHDN)						
Logic-High Input Voltage	V _{ENH}	$2.5V \le V_{\text{IN}} \le 5.5V$	2.0			V
Logic-Low Input Voltage	V _{ENL}	2.5V ≤ V _{IN} ≤ 5.5V			0.7	V
Logic-High Input Current	I _{ENH}	$2.5V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = V_{IN}$	-1000	0.15	+1000	nA
Logic-Low Input Current	I _{ENL}	2.5V ≤ V _{IN} ≤ 5.5V, V _{SHDN} = 0V	-1000	0.05	+1000	nA

ELECTRICAL CHARACTERISTICS—MAX6037_25 (Vout = 2.500V)

(V_{IN} = V_{SHDN} = +5V, I_{OUT} = 0, C_{OUT} = 0.1μF, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CC	ONDITIONS	MIN	TYP	MAX	UNITS	
OUTPUT	•			-			•	
			MAX6037A_25 (0.2%)	2.4950	2.500	2.5050		
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6037B_25 (0.3%)	2.4925	2.500	2.5075	V	
			MAX6037C_25 (0.5%)	2.4875	2.500	2.5125	1	
Output-Voltage Temperature	TOV	MAX6037A_25			6	25	nnm/0C	
Coefficient (Note 2, 4)	TCV _{OUT}	MAX6037B/C_25			6	50	ppm/°C	
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$(V_{OUT} + 0.2V) \le V$	IN ≤ 5.5V		0.0004	0.012	%/V	
		Sourcing: 0 ≤ IOU7	r ≤ 1mA		0.005	0.036		
Land Danidation	ΔV _{OUT} /Δl _{OUT}	Sourcing: 1mA ≤ I	OUT ≤ 5mA		0.003	0.036	1	
Load Regulation		Sinking: -1mA ≤ I _{OUT} ≤ 0			0.02	0.2	- %/mA -	
		Sinking: -5mA ≤ Ic)UT ≤ -1mA		0.01 0.2			
OUT Short-Circuit Current	1	Short to GND			33		A	
	Isc	Short to IN			32		mA	
Dropout Voltage (Note 5)	V. V.	V _{IN} - V _{OUT} ISOURCE = 1mA			40	100	mV	
Dropout voltage (Note 5)	VIN - VOUI	ISOURCE = 5mA			190	410		
Thermal Hysteresis (Note 3)	ΔV _{OUT} /cycle				514		ppm	
Long-Term Stability	ΔV _{OUT} /time	1000h at $T_A = +25$	5°C		133		ppm	
DYNAMIC								
Noise Voltage	0.01.17	f = 0.1Hz to 10Hz			14		μV _{P-P}	
Noise Voltage	eout	f = 10Hz to $1kHz$			30		μVRMS	
		To VOUT = 0.1%	Initial power-up		2.2			
Turn-On Settling Time	t _R	of final value,	V _{IN} = 5V, SHDN pulled		2		ms	
Output Impedance when Disabled	Z _{OUT}	$C_{OUT} = 0.02\mu F$ from low to high $V_{IN} = 5V$, $V_{\overline{S}H\overline{D}N} = 0V$			250		kΩ	
Capacitive-Load Stability Range (Note 4)	Cout			0.02		1	μF	

NIXIN

ELECTRICAL CHARACTERISTICS—MAX6037_25 (VOUT = 2.500V) (continued)

 $(V_{IN} = V_{\overline{SHDN}} = +5V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
INPUT						
Supply Voltage Range	VIN	Guaranteed by line regulation test	2.7		5.5	V
Quiescent Supply Current	I _{IN}			210	275	μΑ
Shutdown Supply Current	ISHDN	V _{SHDN} = 0V		0.05	500	nA
SHUTDOWN (SHDN)						
Logic-High Input Voltage	V _{ENH}	$2.7V \le V_{ N} \le 5.5V$	2.0			V
Logic-Low Input Voltage	VENL	$2.7V \le V_{\text{IN}} \le 5.5V$			0.75	V
Logic-High Input Current	IENH	$2.7V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = V_{IN}$	-1000	0.15	+1000	nA
Logic-Low Input Current	IENL	$2.7V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = 0V$	-1000	0.05	+1000	nA

ELECTRICAL CHARACTERISTICS—MAX6037_30 (Vout = 3.000V)

 $(V_{IN} = V_{\overline{SHDN}} = +5V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25 ^{\circ}\text{C.}$) (Note 1)

PARAMETER	SYMBOL	co	MIN	TYP	MAX	UNITS		
OUTPUT	•						•	
			MAX6037A_30 (0.2%)	2.9940	3.000	3.0060		
Output Voltage	Vout	T _A = +25°C	MAX6037B_30 (0.3%)	2.9910	3.000	3.0090	V	
			MAX6037C_30 (0.5%)	2.9850	3.000	3.0150		
Output-Voltage Temperature	TOVOUT	MAX6037A_30			6	25	nnm/0C	
Coefficient (Note 2, 4)	TCV _{OUT}	MAX6037B/C_30			6	50	ppm/°C	
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$(V_{OUT} + 0.2V) \le V_{I}$	N ≤ 5.5V		0.0004	0.0133	%/V	
		Sourcing: 0 ≤ I _{OUT}	-≤1mA		0.005	0.035		
Load Regulation	ΔV _{OUT} /Δl _{OUT}	Sourcing: 1mA ≤ I _{OUT} ≤ 5mA			0.008	0.03	%/mA	
		Sinking: $-1mA \le I_{OUT} \le 0$			0.02	0.2	/0/111/4	
		Sinking: -5mA ≤ IC	ou⊤ ≤ -1mA		0.01	0.2		
OUT Short-Circuit Current	lee	Short to GND			33		mA	
Our Short-Circuit Current	Isc	Short to IN			32		IIIA	
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	ISOURCE = 1mA			40	100	\/	
Dropout Voltage (Note 5)	VIN - VOUI	ISOURCE = 5mA			190	410	mV	
Thermal Hysteresis (Note 3)	ΔV _{OUT} /cycle				501		ppm	
Long-Term Stability	ΔV_{OUT} /time	1000h at $T_A = +25$	5°C		133		ppm	
DYNAMIC								
Niciae Valtore		f = 0.1Hz to 10Hz			17		μV _{P-P}	
Noise Voltage	eout	f = 10Hz to 1kHz			40		μVRMS	
		To V _{OUT} = 0.1%	Initial power-up		2.4			
Turn-On Settling Time	t _R	of final value, C _{OUT} = 0.02µF	V _{IN} = 5V, SHDN pulled from low to high		2.1		ms	

ELECTRICAL CHARACTERISTICS—MAX6037_30 (VOUT = 3.000V) (continued)

 $(V_{IN} = V_{\overline{SHDN}} = +5V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Impedance when Disabled	Z _{OUT}	$V_{IN} = 5V$, $V_{\overline{SHDN}} = 0V$		300		kΩ
Capacitive-Load Stability Range (Note 4)	C _{OUT}		0.02		1	μF
INPUT						
Supply Voltage Range	VIN	Guaranteed by line regulation test	3.2		5.5	V
Quiescent Supply Current	I _{IN}			210	275	μΑ
Shutdown Supply Current	ISHDN	$V_{\overline{SHDN}} = 0V$		0.05	500	nA
SHUTDOWN (SHDN)						
Logic-High Input Voltage	VENH	$3.2V \le V_{\text{IN}} \le 5.5V$	2.0			V
Logic-Low Input Voltage	V _{ENL}	$3.2V \le V_{\text{IN}} \le 5.5V$			8.0	V
Logic-High Input Current	I _{ENH}	$3.2V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = V_{IN}$	-1000	0.15	+1000	nA
Logic-Low Input Current	I _{ENL}	$3.2V \le V_{\text{IN}} \le 5.5V$, $V_{\overline{\text{SHDN}}} = 0V$	-1000	0.05	+1000	nA

ELECTRICAL CHARACTERISTICS—MAX6037_33 (Vout = 3.300V)

 $(V_{IN} = V_{\overline{SHDN}} = +5V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25 ^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	cc	MIN	TYP	MAX	UNITS	
OUTPUT							
			MAX6037A_33 (0.2%)	3.2934	3.300	3.3066	
Output Voltage	Vout	T _A = +25°C	MAX6037B_33 (0.3%)	3.2901	3.300	3.3099	
			MAX6037C_33 (0.5%)	3.2855	3.300	3.3165	
Output-Voltage Temperature	TOVA	MAX6037A_33			6	25	
Coefficient (Note 2, 4)	TCV _{OUT}	MAX6037B/C_33			6	50	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$(V_{OUT} + 0.2V) \le V$		0.0003	0.0133	%/V	
		Sourcing: 0 ≤ I _{OUT} ≤ 1mA			0.005	0.027	%/mA
	ΔV _{OUT} /Δl _{OUT}	Sourcing: 1mA ≤ I _{OUT} ≤ 5mA			0.002	0.027	
Load Regulation		Sinking: -1mA ≤ I _{OUT} ≤ 0			0.02	0.212	
		Sinking: -5mA ≤ I _{OUT} ≤ -1mA			0.01	0.212	
OUT OF ant Olympicit Organization	1	Short to GND			33		0
OUT Short-Circuit Current	Isc	Short to IN			32		mA
D	M. M.	ISOURCE = 1mA			40	100	>/
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	ISOURCE = 5mA			190	410	mV
Thermal Hysteresis (Note 3)	ΔV _{OUT} /cycle			514		ppm	
Long-Term Stability	ΔV _{OUT} /time	1000h at $T_A = +25$	5°C		133		ppm

ELECTRICAL CHARACTERISTICS—MAX6037_33 (VOUT = 3.300V) (continued)

 $(V_{IN} = V_{\overline{SHDN}} = +5V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
DYNAMIC	<u> </u>						
Noise Veltage	0.01.17	f = 0.1Hz to 10Hz			19		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz			45		μV _{RMS}
		To V _{OUT} = 0.1%	Initial power-up		2.6		
Turn-On Settling Time	t _R	of final value, C _{OUT} = 0.02µF	V _{IN} = 5V, SHDN pulled from low to high		2.4		ms
Output Impedance when Disabled	Z _{OUT}	V _{IN} = 5V, V SHDN = 0V			330		kΩ
Capacitive-Load Stability Range (Note 4)	Cout			0.02		1	μF
INPUT	<u> </u>						
Supply Voltage Range	V _{IN}	Guaranteed by lin	e regulation test	3.5		5.5	V
Quiescent Supply Current	I _{IN}				210	275	μΑ
Shutdown Supply Current	ISHDN	V _{SHDN} = 0V			0.05	500	nA
SHUTDOWN (SHDN)							
Logic-High Input Voltage	VENH	$3.5V \le V_{IN} \le 5.5V$		2.0			V
Logic-Low Input Voltage	V _{ENL}	$3.5V \le V_{IN} \le 5.5V$				0.8	V
Logic-High Input Current	I _{ENH}	$3.5V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = V_{IN}$		-1000	0.15	+1000	nA
Logic-Low Input Current	I _{ENL}	$3.5V \le V_{\text{IN}} \le 5.5V_{\text{s}}$	$V_{\overline{SHDN}} = 0V$	-1000	0.05	+1000	nA

ELECTRICAL CHARACTERISTICS—MAX6037_41 (Vout = 4.096V)

 $(V_{IN} = V_{\overline{SHDN}} = +5V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS				
ОИТРИТ											
Output Voltage			MAX6037A_41 (0.2%)	4.0878	4.096	4.1042					
	Vout	$T_A = +25^{\circ}C$	MAX6037B_41 (0.3%)	4.0837	4.096	4.1083	V				
			MAX6037C_41 (0.5%)	4.0755	4.096	4.1165					
Output-Voltage Temperature	TOV	MAX6037A_41			6	25	10 C				
Coefficient (Note 2, 4)	TCV _{OUT}	MAX6037B/C_41			6	50	ppm/°C				
Line Regulation	ΔV _{OUT} /ΔV _{IN}	(V _{OUT} + 0.2V) ≤ '	V _{IN} ≤ 5.5V		0.0003	0.0105	%/V				
		Sourcing: 0 ≤ Iou	JT ≤ 1mA		0.004	0.35					
Lood Deculation	A)//Al	Sourcing: 1mA ≤ I _{OUT} ≤ 5mA			0.002	0.027	0/ /ma A				
Load Regulation	ΔV _{OUT} /Δl _{OUT}	Sinking: $-1mA \le I_{OUT} \le 0$			0.02	0.212	%/mA				
		Sinking: -5mA ≤ l	Sinking: -5mA ≤ I _{OUT} ≤ -1mA		0.01	0.212					

ELECTRICAL CHARACTERISTICS—MAX6037_41 (Vout = 4.096V) (continued)

 $(V_{IN} = V_{\overline{SHDN}} = +5V, I_{OUT} = 0, C_{OUT} = 0.1 \mu F, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OLIT Chart Circuit Current	1	Short to GND			33		A
OUT Short-Circuit Current	Isc	Short to IN			32	mA	
Dropout Voltogo (Noto C)	\/\/	ISOURCE = 1mA			40	100	\/
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	ISOURCE = 5mA			190	410	mV
Thermal Hysteresis (Note 3)	ΔV _{OUT} /cycle				524		ppm
Long-Term Stability	ΔV _{OUT} /time	1000h at $T_A = +25$	5°C		133		ppm
DYNAMIC							
Naina Valtaga		f = 0.1Hz to 10Hz			24		μV _{P-P}
Noise Voltage	eout	f = 10Hz to $1kHz$			50		μV _{RMS}
		To V _{OUT} = 0.1%	Initial power-up		3.2		
Turn-On Settling Time	t _R	of final value, C _{OUT} = 0.02μF	$V_{IN} = 5V$, SHDN pulled from low to high		3.2		ms
Output Impedance when Disabled	Z _{OUT}	$V_{IN} = 5V$, $V_{\overline{SHDN}} = 0$			410		kΩ
Capacitive-Load Stability Range (Note 4)	Cout			0.02		1	μF
INPUT	-						•
Supply Voltage Range	VIN	Guaranteed by line regulation test		4.3		5.5	V
Quiescent Supply Current	I _{IN}				210	275	μΑ
Shutdown Supply Current	ISHDN	V _{SHDN} = 0V			0.05	500	nA
SHUTDOWN (SHDN)							
Logic-High Input Voltage	V _{ENH}	$4.3V \le V_{IN} \le 5.5V$		2.0			V
Logic-Low Input Voltage	VENL	4.3V ≤ V _{IN} ≤ 5.5V				0.8	V
Logic-High Input Current	I _{ENH}	$4.3V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = V_{IN}$		-1000	0.15	+1000	nA
Logic-Low Input Current	I _{ENL}	$4.3V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = 0V$		-1000	0.05	+1000	nA

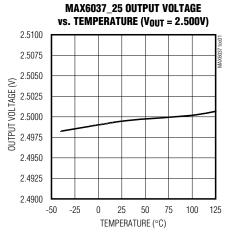
MIXIN

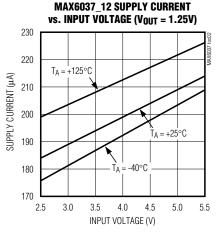
ELECTRICAL CHARACTERISTICS—MAX6037_ADJ (Vout = 1.184V to 5V)

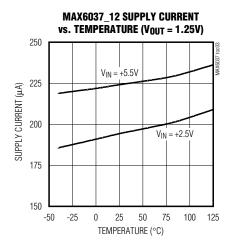
 $(V_{IN} = V_{\overline{SHDN}} = +5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, ADJ \text{ shorted to OUT unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OUTPUT				•				
			MAX6037A_ADJ (0.2%)	1.1816	1.1840	1.1864	V	
Initial Output Voltage (Note 6)	Vout	$T_A = +25^{\circ}C$	MAX6037B_ADJ (0.3%)	1.1805	1.1840	1.1875		
			MAX6037C_ADJ (0.5%)	1.1781	1.1840	1.1899		
Output Voltage Range	Vout				\	/ _{IN} - 0.15	V	
Output-Voltage Temperature	TCV _{OUT}	MAX6037A_ADJ			6	25	ppm/°C	
Coefficient (Notes 2, 4, 7)	10,001	MAX6037B/C_AD	J		6	50	ррпис	
Line Regulation (Note 8)	ΔV _{OUT} /ΔV _{IN}	$2.5V \le V_{\text{IN}} \le 5.5V$			0.0008	0.013	%/V	
		Sourcing: 0 ≤ I _{OUT} ≤ 1mA			0.012	0.078		
Load Regulation	ΔV _{OUT} /ΔΙ _{ΟUΤ}	Sourcing: 1mA ≤	l _{OUT} ≤ 5mA		0.014	0.1	%/m/\	
Load negulation	Δνουμαίουμ	Sinking: -1mA ≤ I ₀	OUT ≤ 0		0.005	0.12	- %/mA -	
		Sinking: -5mA ≤ I ₀	DUT ≤ -1mA		0.005	0.12		
OLIT Chart Circuit Current	1	Short to GND			33		A	
OUT Short-Circuit Current	ISC	Short to IN			32		mA	
Dropout Voltage (Notes 5, 9)	V _{IN} - V _{OUT}	ISOURCE = 1mA, Vout = 5V			40	100	- mV	
		ISOURCE = 5mA, VOUT = 5V			190	410		
Thermal Hysteresis (Note 3)	ΔV _{OUT} /cycle				421		ppm	
Long-Term Stability	ΔV _{OUT} /time	1000h at T _A = +25°C			133		ppm	
DYNAMIC								
Niciae Veltage (Nicto 10)		f = 0.1Hz to 10Hz			6		μV _{P-P}	
Noise Voltage (Note 10)	eout	f = 10Hz to $1kHz$			15		μV _{RMS}	
		To V _{OUT} = 0.1%	Initial power-up		360			
Turn-On Settling Time	t _R	of final value, Cout = 0.02µF	V _{IN} = 5V, SHDN pulled from low to high		75		μs	
Output Impedance when Disabled (Note 11)	Z _{OUT}	V _{IN} = 5V, V SHDN = 0V			>10		МΩ	
Capacitive-Load Stability Range (Note 4)	Соит			0.02		1	μF	
INPUT								
Supply Voltage Range	VIN	Guaranteed by line regulation test		2.5		5.5	V	
Quiescent Supply Current	I _{IN}				200	250	μΑ	
Shutdown Supply Current	ISHDN	V _{SHDN} = 0V			0.15	500	nA	
ADJ Input Bias Current (Note 4)	I _{ADJ}			-50	0.5	+50	nA	

ELECTRICAL CHARACTERISTICS—MAX6037_ADJ (Vout = 1.184V to 5V) (continued)

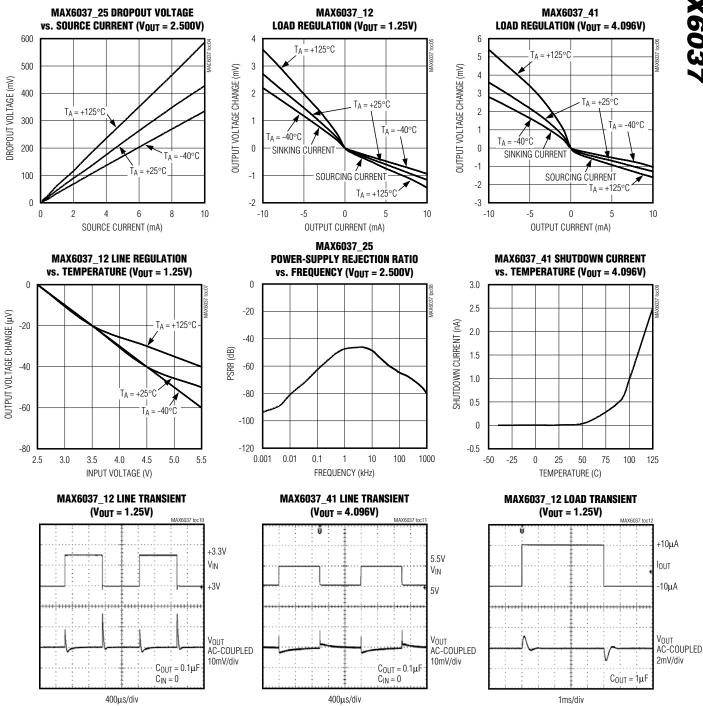

 $(V_{IN} = V_{\overline{SHDN}} = +5V, I_{OUT} = 0, T_A = T_{MIN}$ to T_{MAX} , ADJ shorted to OUT unless otherwise noted. Typical values are at $T_A = +25$ °C.) (Note 1)

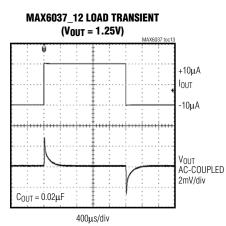

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SHUTDOWN (SHDN)						
Logic-High Input Voltage	V _{ENH}	$2.5V \le V_{\text{IN}} \le 5.5V$	2.0			V
Logic-Low Input Voltage	V _{ENL}	2.5V ≤ V _{IN} ≤ 5.5V			0.7	V
Logic-High Input Current	I _{ENH}	$2.5V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = V_{IN}$	-1000	0.15	+1000	nA
Logic-Low Input Current	I _{ENL}	$2.5V \le V_{IN} \le 5.5V$, $V_{\overline{SHDN}} = 0V$	-1000	0.05	+1000	nA

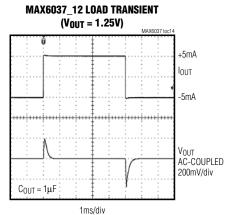

- Note 1: All devices are 100% tested at TA = +25°C and are guaranteed by design for TA = TMIN to TMAX, as specified.
- Note 2: Temperature coefficient is measured by the "box" method, i.e., the maximum ΔV_{OUT} / V_{OUT} is divided by the maximum ΔT.
- Note 3: Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from T_{MAX} to T_{MIN}.
- Note 4: Not production tested. Guaranteed by design.
- **Note 5:** Dropout voltage is defined as the minimum differential voltage (V_{IN} V_{OUT}) at which V_{OUT} decreases by 1% from its original value at V_{IN} = +5.0V.
- **Note 6:** V_{OUT} initial accuracy for the MAX6037_ADJ is tested with ADJ shorted to OUT. Actual accuracy will be affected by matching and the temperature coefficient of the external resistors used. Use 1% resistors with low temperature coefficient for best overall accuracy.
- **Note 7:** The temperature coefficient for the MAX6037_ADJ is specified for the case where ADJ is connected to OUT. For the case where an external resistive network is used to set the output voltage, actual change in reference output over temperature will be affected by the temperature coefficient and matching of the external resistors used.
- **Note 8:** The minimum V_{IN} is the greater of +2.5V and $(V_{OUT} + 0.2V)$.
- Note 9: Vout set to +5V with an external resistive-divider.
- **Note 10:** Noise for the MAX6037_ADJ is specified for a +1.25V output. Noise is proportional to V_{OUT} and is greater for higher output voltages. In addition, external resistors used to set the output voltage can contribute to noise.

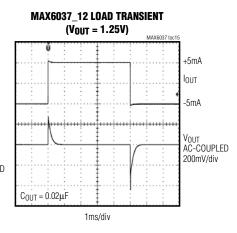
Typical Operating Characteristics

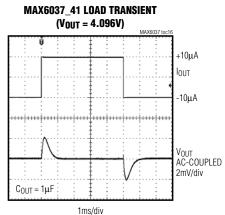
 $(V_{IN} = +3V \text{ for the MAX6037}_12 \text{ and MAX6037}_21; V_{IN} = +5V \text{ for the MAX6037}_25, MAX6037}_30, MAX6037}_33, and MAX6037}_41; I_{OUT} = 0, C_{OUT} = 0.1 \mu F, C_{IN} = 0.1 \mu F, T_A = +25 ^{\circ}C, unless otherwise specified.)$

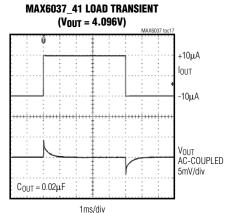


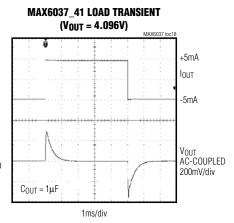

Typical Operating Characteristics (continued)

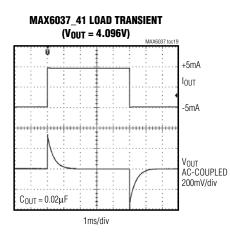

 $(V_{IN} = +3V \text{ for the MAX6037}_12 \text{ and MAX6037}_21; V_{IN} = +5V \text{ for the MAX6037}_25, MAX6037}_30, MAX6037}_33, and MAX6037}_41; I_{OUT} = 0, C_{OUT} = 0.1 \mu F, C_{IN} = 0.1 \mu F, T_A = +25 ^{\circ}C, unless otherwise specified.)$

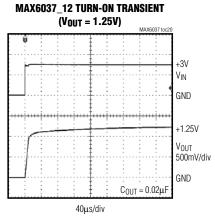


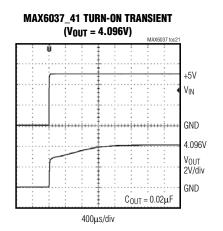

Typical Operating Characteristics (continued)

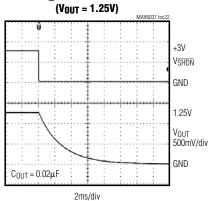

 $(V_{IN} = +3V)$ for the MAX6037_12 and MAX6037_21; $V_{IN} = +5V$ for the MAX6037_25, MAX6037_30, MAX6037_33, and MAX6037_41; $V_{IOUT} = 0$, $V_{OUT} = 0.1 \mu F$, $V_{IN} = 0.1 \mu F$,

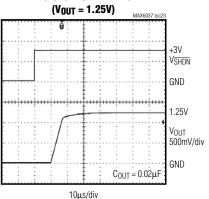




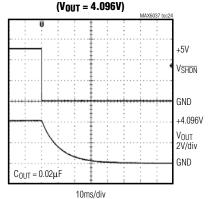


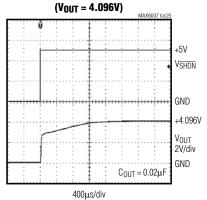


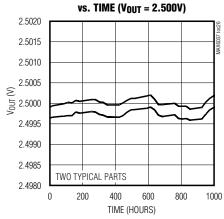



Typical Operating Characteristics (continued)

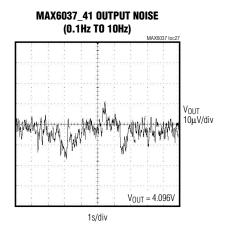
 $(V_{IN} = +3V \text{ for the MAX6037}_12 \text{ and MAX6037}_21; V_{IN} = +5V \text{ for the MAX6037}_25, MAX6037}_30, MAX6037}_33, and MAX6037}_41; I_{OUT} = 0, C_{OUT} = 0.1 \mu F, C_{IN} = 0.1 \mu F, T_A = +25 ^{\circ}C, unless otherwise specified.)$

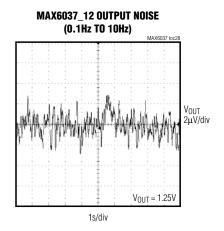

MAX6037_12 SHUTDOWN TRANSIENT


MAX6037_12 Exiting shutdown transient


MAX6037_41 SHUTDOWN TRANSIENT

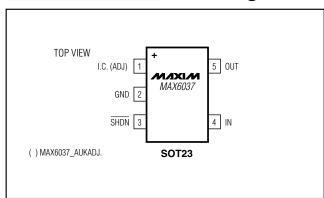
MAX6037_41
EXITING SHUTDOWN TRANSIENT


MAX6037_25 LONG-TERM STABILITY



Typical Operating Characteristics (continued)

 $(V_{IN} = +3V \text{ for the MAX6037}_12 \text{ and MAX6037}_21; V_{IN} = +5V \text{ for the MAX6037}_25, MAX6037}_30, MAX6037}_33, and MAX6037}_41; I_{OUT} = 0, C_{OUT} = 0.1 \mu F, C_{IN} = 0.1 \mu F, T_A = +25 ^{\circ}C, unless otherwise specified.)$



Note 12: Many of the MAX6037 family *Typical Operating Characteristics* are extremely similar. The extremes of these characteristics are found in the MAX6037_12 (1.25V output) and the MAX6037_41 (4.096V output). The *Typical Operating Characteristics* of the remainder of the MAX6037 family typically lie between those two extremes and can be estimated based on their output voltages.

Pin Description

PIN	NAME	FUNCTION
	I.C.	Internally connected. (All fixed output voltage options.) Do not connect anything to this pin.
1	ADJ	Output Voltage Adjustment Connection. Connect a resistor-divider between OUT, ADJ and GND to set the output voltage. (MAX6037_ADJ only).
2	GND	Ground
3	SHDN	Active-Low Shutdown Input. Pull SHDN low to disable the device. Connect SHDN to IN for normal operation.
4	IN	Supply Voltage Input. Bypass with a 0.1µF to 1µF capacitor to GND.
5	OUT	Reference-Voltage Output. Connect an output capacitor to GND in the 0.02µF to 1µF range.

Pin Configuration

Detailed Description

The MAX6037 is a family of low-dropout, micropower voltage references. These devices all feature a shutdown mode by forcing SHDN low, dropping the quiescent current to less than 500nA. The MAX6037 can sink and source up to 5mA with less than 410mV of dropout voltage, making them attractive for use in low-voltage applications. The MAX6037 is available in six fixed output voltages of 1.25V, 2.048V, 2.5V, 3.0V, 3.3V and 4.096V, and an adjustable output version for voltages between the range of 1.184V and 5V.

Shutdown

The MAX6037 features an active-low shutdown mode. Pulling SHDN low disables the output and forces the quiescent current to less than 500nA (typically 50pA). Connect SHDN to IN for normal operation.

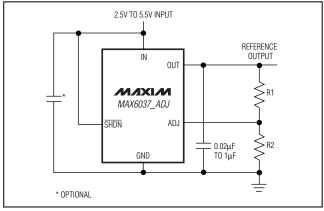


Figure 1. MAX6037_ADJ Typical Operating Circuit

MAX6037_ADJ Adjustable Output Voltage

Set the output voltage on the MAX6037_ADJ by placing a resistor-divider network between OUT, ADJ, and GND (See Figure 1). Use the following formula to calculate the output voltage:

$$V_{OUT} = \left(1 + \frac{R1}{R2}\right)V_{ADJ}$$

where $V_{ADJ}=1.184V.$ Set $R2=1M\Omega$ or less. Currents through Resistor R1 and R2 add to the quiescent supply current.

Supply Current

The quiescent supply current of the series-mode MAX6037 family is typically 190µA to 210µA. When the supply voltage is below the minimum-specified input voltage during turn-on, the device can draw up to 250µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Thermal Hysteresis

Output voltage hysteresis is the change of output voltage at $T_A = +25^{\circ}C$ before and after the device is cycled over its entire operating temperature range. The typical thermal hysteresis value is 500ppm.

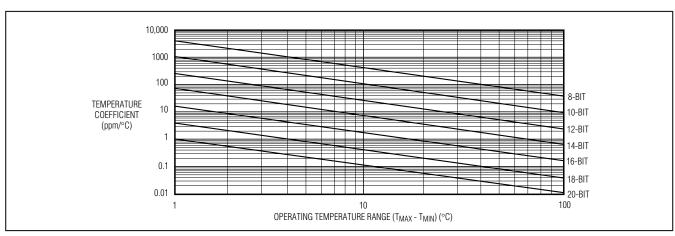


Figure 2. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in 360µs to 3.2ms, depending on the device. The turn-on time can increase up to 10ms with the device operating at the minimum dropout voltage and the maximum capacitive load.

Applications Information

Input Bypassing

For the best transient performance, decouple the input with a $0.1\mu F$ to $1\mu F$ ceramic capacitor as shown in the *Typical Operating Circuit*. Locate the capacitor as close to IN as possible. No capacitor is necessary if transient performance is less important.

Output/Load Capacitance

Devices in the MAX6037 family require an output capacitance in the range of 0.02µF to 1µF for frequency stability.

Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit throughout the operating temperature range. Figure 2 shows the maximum allowable reference voltage temperature coefficient to keep the conversion error to less than 1 LSB, as a function of the operating temperature range (TMAX - TMIN) with the converter resolution as a parameter. The graph assumes the reference voltage temperature coefficient as the only parameter affecting accuracy.

In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage reference changes.

Ordering Information/Selector Guide (continued)

PART	OUTPUT VOLTAGE (V)	INITIAL ACCURACY %	MAX TEMPCO (ppm/°C)	PIN-PACKAGE	PKG CODE	TOP MARK
MAX6037AAUK25+T	2.5	0.2	25	5 SOT23-5	U5-2	AEJB
MAX6037BAUK25+T	2.5	0.3	50	5 SOT23-5	U5-2	AEJC
MAX6037CAUK25+T	2.5	0.5	50	5 SOT23-5	U5-2	AEJD
MAX6037AAUK30+T	3.0	0.2	25	5 SOT23-5	U5-2	AEJE
MAX6037BAUK30+T	3.0	0.3	50	5 SOT23-5	U5-2	AEJF
MAX6037CAUK30+T	3.0	0.5	50	5 SOT23-5	U5-2	AEJG
MAX6037AAUK33+T	3.3	0.2	25	5 SOT23-5	U5-2	AEJH
MAX6037BAUK33+T	3.3	0.3	50	5 SOT23-5	U5-2	AEJI
MAX6037CAUK33+T	3.3	0.5	50	5 SOT23-5	U5-2	AEJJ
MAX6037AAUK41+T	4.096	0.2	25	5 SOT23-5	U5-2	AEJK
MAX6037BAUK41+T	4.096	0.3	50	5 SOT23-5	U5-2	AEJL
MAX6037CAUK41+T	4.096	0.5	50	5 SOT23-5	U5-2	AEJM
MAX6037AAUKADJ+T**	1.184 to 5, adjustable	0.2	25	5 SOT23-5	U5-2	AEIS
MAX6037BAUKADJ+T**	1.184 to 5, adjustable	0.3	50	5 SOT23-5	U5-2	AEIT
MAX6037CAUKADJ+T**	1.184 to 5, adjustable	0.5	50	5 SOT23-5	U5-2	AEIU

^{**}The accuracy of the MAX6037_ADJ is dependent on the accuracy of the external resistors. Use 1% resistors with low temperature coefficient for best overall accuracy.

Note: All devices are specified over the -40°C to +125°C operating temperature range.

_____Chip Information

TRANSISTOR COUNT: 372 PROCESS: BICMOS

16 /V/XI/VI

⁺Denotes a lead-free package.

T = Tape and reel.

SOT-23 5L .EPS

Low-Power, Fixed and Adjustable Reference with Shutdown in SOT23

Package Information

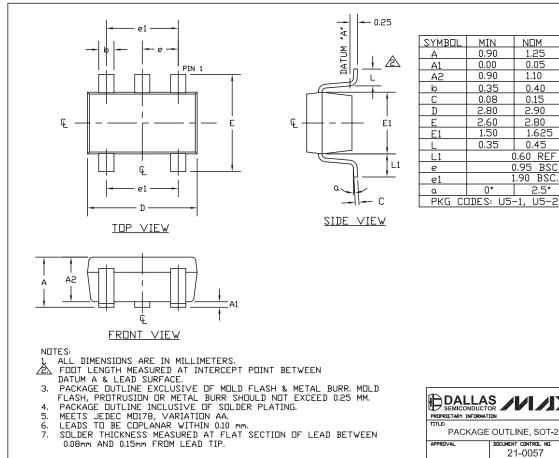
MAX

0.15

1.30

0.50

0.20


3.00

3.00

0.60

1.45

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

PROPRIETARY INFORMATION
TITLE PACKAGE OUTLINE, SOT-23, 5L ۲۰۰۰ | ۱/₁ 21-0057

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	2/04	Initial release	_
1	12/07	Updating selector table	1–7, 9, 16

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

18 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600