MAX6029

Ultra-Low-Power Precision Series Voltage Reference

Absolute Maximum Ratings

IN to GND0.3V to +13V
OUT to GND0.3V to the lower of $+6V$ and $(V_{IN} + 0.3V)$
Output to GND Short-Circuit DurationContinuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
5-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW
8-Pin SO (derate 5.9mW/°C above +70°C)470.6mW

Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics—MAX6029 21 (VOUT = 2.048V)

 $(V_{IN} = 2.5V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT			•			
Output Voltage	Vout	T _A = +25°C	2.0449	2.0480	2.0511	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 2.5V to 12.6V		27	200	μV/V
Load Pagulation	ΔV _{OUT} /	I _{OUT} = 0 to 4mA		0.22	0.7	\//^
Load Regulation	Δ lout	I _{OUT} = 0 to -1mA		2.4	5.5	μV/μΑ
Output Short-Circuit Current	Isc			60		mA
Long-Term Stability	ΔV_{OUT} /time	1000 hours at +25°C		150		ppm
Thermal Hysteresis		(Note 4)		140		ppm
DYNAMIC CHARACTERISTICS	3					
Naisa Valtaga		f = 0.1Hz to 10Hz		30		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz		115		μV _{RMS}
Ripple Rejection	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 2.5V ±200mV, f = 120Hz		43		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		450		μs
INPUT						
Supply Voltage Range	VIN		2.5		12.6	V
Supply Current	I _{IN}				5.25	μΑ
Change in Supply Current	I _{IN} /V _{IN}	V _{IN} = 2.5V to 12.6V			1.5	μΑ/V

Electrical Characteristics—MAX6029_25 (Vout = 2.500V)

 $(V_{IN}=2.7V,\,I_{OUT}=0,\,T_A=T_{MIN}\,to\,T_{MAX},\,unless\,otherwise\,noted.\,Typical\,values\,are\,at\,T_A=+25^{\circ}C.)\,(Note\,1)$

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
ОUТРUТ							
Outrant Vallages	1/-	T .0500	MAX6029EUK	2.4963	2.5000	2.5038	
Output Voltage	Vout	$T_A = +25$ °C	MAX6029ESA	2.495	2.500	2.505	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)				30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$V_{IN} = 2.7V \text{ to } 12.6V$			30	230	μV/V
Load Degulation	A\//A	I _{OUT} = 0 to 4mA			0.1	0.6	\//
Load Regulation	$\Delta V_{OUT}/\Delta I_{OUT}$	$I_{OUT} = 0 \text{ to -1mA}$			2.5	6.2	μV/μΑ
Due a cost Valta are (Nata E)	\/\/	I _{OUT} = 0				100	mV
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 4mA				200	IIIV
Output Short-Circuit Current	Isc				60		mA
Long-Term Stability	ΔV _{OUT} /time	1000 hours at +25°C			150		ppm
Thermal Hysteresis		(Note 4)			140		ppm
DYNAMIC CHARACTERISTICS	1						
Noise Veltage	0.01.17	f = 0.1Hz to 10Hz			39		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz			137		μVRMS
Ripple Rejection	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 2.7V ±200mV, f = 120Hz			34		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value			700		ms
INPUT							
Supply Voltage Range	VIN			2.7		12.6	V
Supply Current	I _{IN}					5.75	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$V_{IN} = 2.7V \text{ to } 12.6V$				1.5	μA/V

Electrical Characteristics—MAX6029_30 (Vout = 3.000V)

 $(V_{IN}=3.2V,\,I_{OUT}=0,\,T_A=T_{MIN}\,to\,T_{MAX},\,unless\,otherwise\,noted.\,Typical\,values\,are\,at\,T_A=+25^{\circ}C.)\,(Note\,1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ОИТРИТ	•					
Output Voltage	Vout	T _A = +25°C	2.9955	3.0000	3.0045	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 3.2V to 12.6V		15	250	μV/V
Load Regulation	ΔV _{OUT} /	I _{OUT} = 0 to 4mA		0.1	0.6	\//٨
Load Regulation	Δ l $_{ m OUT}$	I _{OUT} = 0 to -1mA		2.4	6.5	μV/μΑ
Dropout Voltage (Note 5)	VIII VOLIT	I _{OUT} = 0			100	mV
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 4mA			200	IIIV
Output Short-Circuit Current	Isc			60		mA
Long-Term Stability	ΔV _{OUT} /time	1000 hours at +25°C		150		ppm
Thermal Hysteresis		(Note 4)		140		ppm
DYNAMIC CHARACTERISTICS						
Noise Voltage	00117	f = 0.1Hz to 10Hz		39		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz		161		μVRMS
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 3.2V \pm 200 \text{mV}, f = 120 \text{Hz}$		37		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		775		μs
INPUT						
Supply Voltage Range	VIN		3.2		12.6	V
Supply Current	I _{IN}				6.75	μΑ
Change in Supply Current	I _{IN} /V _{IN}	V _{IN} = 3.2V to 12.6V			1.5	μA/V

Electrical Characteristics—MAX6029_33 (Vout = 3.000V)

 $(V_{IN}=3.5V,\,I_{OUT}=0,\,T_A=T_{MIN}\,to\,T_{MAX},\,unless\,otherwise\,noted.\,Typical\,values\,are\,at\,T_A=+25^{\circ}C.)\,(Note\,1)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
OUTPUT						
Output Voltage	Vout	$T_A = +25$ °C	3.2951	3.3000	3.3050	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C
Line Regulation	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 3.5V$ to 12.6V		30	270	μV/V
Load Degulation	A\/=/Alo=	I _{OUT} = 0 to 4mA		0.1	0.6	//
Load Regulation	$\Delta V_{OUT}/\Delta I_{OUT}$	$I_{OUT} = 0$ to -1mA		2.4	7	μV/μΑ
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 0			100	mV
Dropout Voltage (Note 5)	VIN - VOUI	$I_{OUT} = 4mA$			200	IIIV
Output Short-Circuit Current	Isc			60		mA
Long-Term Stability	ΔV _{OUT} /time	1000 hours at +25°C		150		ppm
Thermal Hysteresis		(Note 4)		140		ppm
DYNAMIC CHARACTERISTICS						
Noise Veltage	00117	f = 0.1Hz to $10Hz$		56		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz		174		μV _{RMS}
Ripple Rejection	$\Delta V_{OUT}/\Delta V_{IN}$	$V_{IN} = 3.5V \pm 200 \text{mV}, f = 120 \text{Hz}$		38		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		1		ms
INPUT						
Supply Voltage Range	V _{IN}		3.5		12.6	V
Supply Current	I _{IN}				7.25	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$V_{IN} = 3.5V$ to 12.6V			1.5	μΑ/V

Electrical Characteristics—MAX6029_41 (Vout = 4.096V)

 $(V_{IN} = 4.3V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
OUTPUT	•						
O. t t \ / - t	M.	T .0500	MAX6029EUK	4.0899	4.0960	4.1021	V
Output Voltage	Vout	$T_A = +25^{\circ}C$	MAX6029ESA	4.088	4.096	4.104	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)				30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	$V_{IN} = 4.3V \text{ to } 12.6V$			30	310	μV/V
Lood Deculation	A)//Al	$I_{OUT} = 0$ to $4mA$			0.1	0.6	\ / / ^
Load Regulation	ΔV _{OUT} /Δl _{OUT}	$I_{OUT} = 0 \text{ to -1mA}$			2.5	8.5	μV/μΑ
Drangut Voltage (Note 5)	VIN - VOUT	I _{OUT} = 0				100	mV
Dropout Voltage (Note 5)	VIN - VOUT	I _{OUT} = 4mA				200	IIIV
Output Short-Circuit Current	I _{SC}				60		mA
Long-Term Stability	ΔV _{OUT} /time	1000 hours at +25°C			150		ppm
Thermal Hysteresis		(Note 4)			140		ppm
DYNAMIC CHARACTERISTICS	}						
Nicios Voltago	0.01.17	f = 0.1Hz to 10Hz			72		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz			210		μV _{RMS}
Ripple Rejection	ΔV _{OUT} /ΔV _{IN}	$V_{IN} = 4.3V \pm 200 \text{mV}, t$	V _{IN} = 4.3V ±200mV, f = 120Hz		36		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value			1.2		ms
INPUT							
Supply Voltage Range	VIN			4.3		12.6	V
Supply Current	I _{IN}					8.75	μΑ
Change in Supply Current	I _{IN} /V _{IN}	$V_{IN} = 4.3V \text{ to } 12.6V$				1.5	μA/V

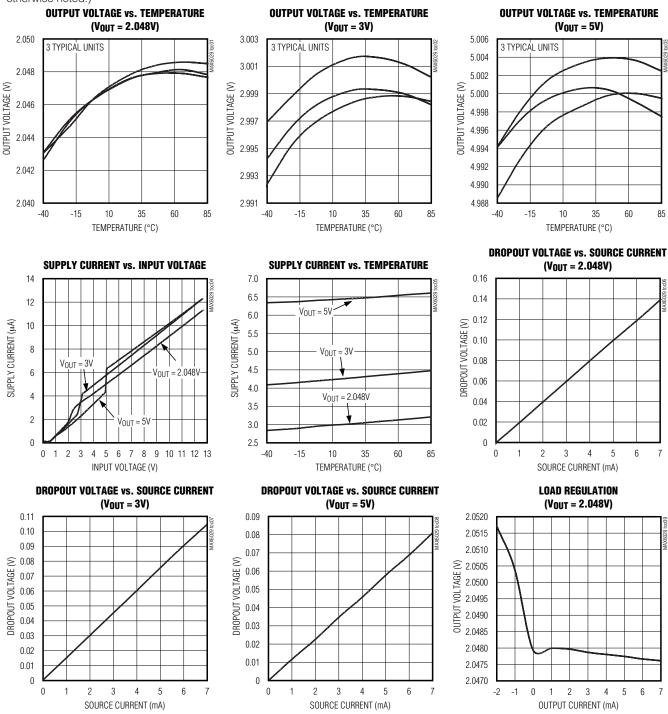
Electrical Characteristics—MAX6029_50 (Vout = 5.000V)

 $(V_{IN} = 5.2V, I_{OUT} = 0, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}\text{C.})$ (Note 1)

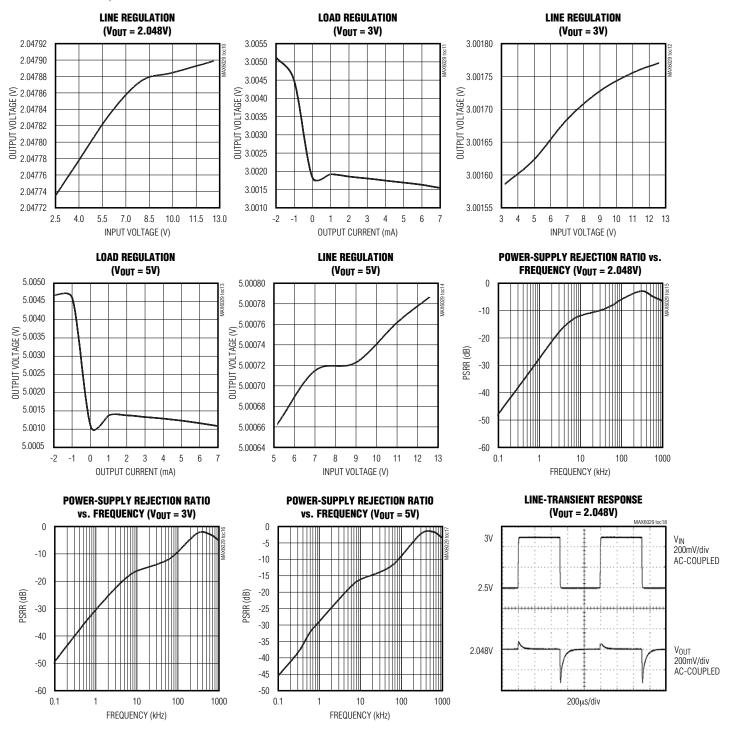
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
ОИТРИТ						
Output Voltage	Vout	T _A = +25°C	4.9925	5.0000	5.0075	V
Output Voltage Temperature Coefficient	TCV _{OUT}	(Notes 2, 3)			30	ppm/°C
Line Regulation	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 5.2V to 12.6V		34	375	μV/V
Load Regulation	ΔV _{OUT} /	I _{OUT} = 0 to 4mA		0.3	0.8	\//٨
Load Regulation	Δlout	I _{OUT} = 0 to -1mA		3.3	9	μV/μΑ
Dropout Voltago (Noto 5)	VINI VOLIT	I _{OUT} = 0			100	mV
Dropout Voltage (Note 5)	V _{IN} - V _{OUT}	I _{OUT} = 4mA			200	IIIV
Output Short-Circuit Current	Isc			60		mA
Long-Term Stability	ΔV _{OUT} /time	1000 hours at +25°C		150		ppm
Thermal Hysteresis		(Note 4)		140		ppm
DYNAMIC CHARACTERISTIC	S					
Noise Veltage	00117	f = 0.1Hz to 10Hz		90		μV _{P-P}
Noise Voltage	eout	f = 10Hz to 1kHz		245		μV _{RMS}
Ripple Rejection	ΔV _{OUT} /ΔV _{IN}	V _{IN} = 5.2V ±200mV, f = 120Hz		38		dB
Turn-On Settling Time	t _R	To V _{OUT} = 0.1% of final value		1.4		ms
INPUT						
Supply Voltage Range	VIN		5.2		12.6	V
Supply Current	I _{IN}				10.5	μΑ
Change in Supply Current	I _{IN} /V _{IN}	V _{IN} = 5.2V to 12.6V			1.5	μΑ/V

Note 1: MAX6029 is 100% production tested at T_A = +25°C and is guaranteed by design for T_A = T_{MIN} to T_{MAX} as specified.

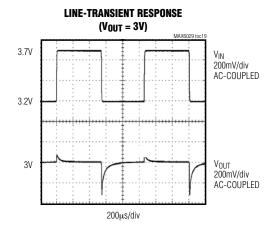
Note 2: Temperature coefficient is defined by box method: (VMAX - VMIN)/(Δ T × V+25°C).

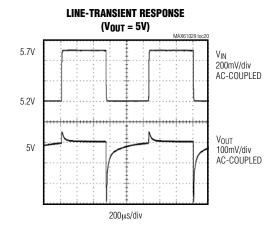

Note 3: Not production tested. Guaranteed by design.

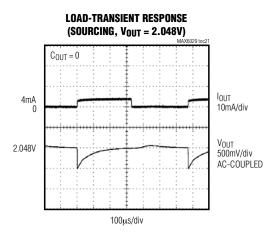
Note 4: Thermal hysteresis is defined as the change in T_A = +25°C output voltage before and after temperature cycling of the device (from T_A = T_{MIN} to T_{MAX}). Initial measurement at T_A = +25°C is followed by temperature cycling the device to T_A = +85°C then to T_A = -40°C and another measurement at T_A = +25°C is compared to the original measurement at T_A = +25°C.

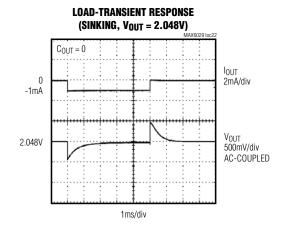

Note 5: Dropout voltage is the minimum input voltage at which V_{OUT} changes by 0.1% from V_{OUT} at rated V_{IN} and is guaranteed by Load Regulation Test.

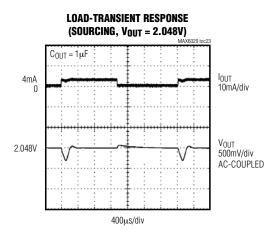
Typical Operating Characteristics

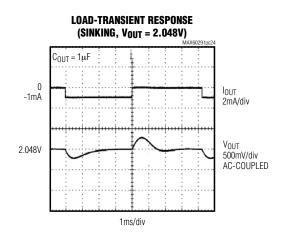

 $(V_{IN} = 2.5V \text{ for MAX6029EUK21}, V_{IN} = 3.2V \text{ for MAX6029EUK30}, \text{ and } V_{IN} = 5.2V \text{ for MAX6029EUK50}, I_{OUT} = 0, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

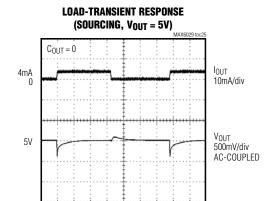


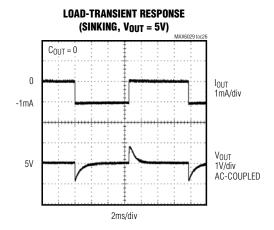

 $(V_{\text{IN}} = 2.5\text{V} \text{ for MAX6029EUK21}, V_{\text{IN}} = 3.2\text{V} \text{ for MAX6029EUK30}, \text{ and } V_{\text{IN}} = 5.2\text{V} \text{ for MAX6029EUK50}, I_{\text{OUT}} = 0, T_{\text{A}} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

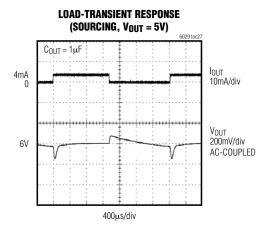


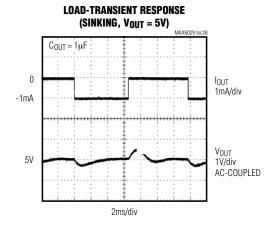

 $(V_{\text{IN}} = 2.5\text{V} \text{ for MAX6029EUK21}, V_{\text{IN}} = 3.2\text{V} \text{ for MAX6029EUK30}, \text{ and } V_{\text{IN}} = 5.2\text{V} \text{ for MAX6029EUK50}, I_{\text{OUT}} = 0, T_{\text{A}} = +25^{\circ}\text{C}, \text{ unless otherwise noted.})$

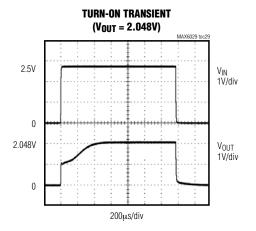


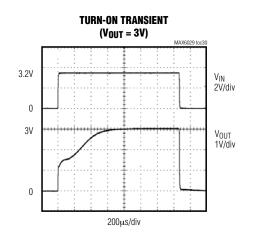


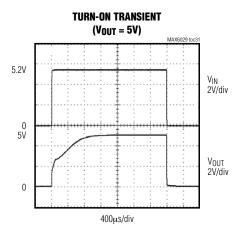


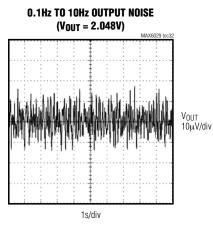


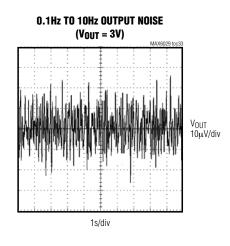

 $(V_{IN}=2.5V)$ for MAX6029EUK21, $V_{IN}=3.2V$ for MAX6029EUK30, and $V_{IN}=5.2V$ for MAX6029EUK50, $I_{OUT}=0$, $T_{A}=+25^{\circ}C$, unless otherwise noted.)

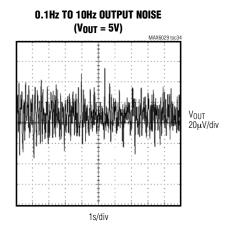


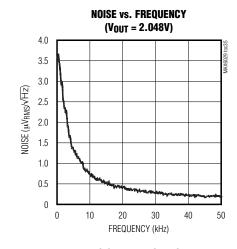

400µs/div

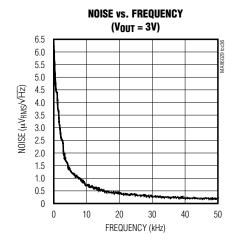


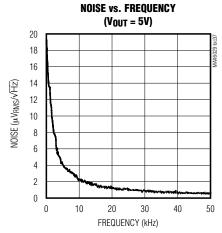







 $(V_{IN}=2.5V)$ for MAX6029EUK21, $V_{IN}=3.2V$ for MAX6029EUK30, and $V_{IN}=5.2V$ for MAX6029EUK50, $I_{OUT}=0$, $T_{A}=+25^{\circ}C$, unless otherwise noted.)





Pin Description

P	IN	NAME	FUNCTION
SOT23	so	NAIVIE	FUNCTION
1	2	IN	Positive Voltage Supply
2	4	GND	Ground
3, 4	1, 3, 5, 7,	N.C.	No Connection. Leave unconnected or connect to ground.
5	6	OUT	Reference Output

Applications Information

Input Bypassing

The MAX6029 does not require an input bypass capacitor. For improved transient performance, bypass the input to ground with a 0.1µF ceramic capacitor. Place the capacitor as close to IN as possible.

Load Capacitance

The MAX6029 does not require an output capacitor for stability. The MAX6029 is stable driving capacitive loads from 0 to 100pF and 0.1µF to 10µF when sourcing current and from 0 to 0.4µF when sinking current. In applications where the load or the supply can experience step changes, an output capacitor reduces the amount of overshoot (undershoot) and improves the circuit's transient response. Many applications do not require an external capacitor, and the MAX6029 offers a significant advantage in applications where board space is critical.

Supply Current

The quiescent supply current of the series-mode MAX6029 is very small, 5.25µA (max), and is very stable against changes in the supply voltage with only 1.5µA/V (max) variation with supply voltage. The

MAX6029 family draws load current from the input voltage source only when required, so supply current is not wasted and efficiency is maximized at all input voltages. This improved efficiency reduces power dissipation and extends battery life.

Output Thermal Hysteresis

Output thermal hysteresis is the change of the output voltage at $T_A = +25^{\circ}C$ before and after the device is cycled over its entire operating temperature range. Hysteresis is caused by differential package stress appearing across the device.

Temperature Coefficient vs. Operating Temperature Range for a 1LSB Maximum Error

In a data converter application, the reference voltage of the converter must stay within a certain limit to keep the error in the data converter smaller than the resolution limit through the operating temperature range. Figure 1 shows the maximum allowable reference voltage temperature coefficient to keep the conversion error to less than 1 LSB, as a function of the operating temperature range (TMAX - TMIN) with the converter resolution as a parameter. The graph assumes the reference-voltage temperature coefficient as the only parameter affecting accuracy. In reality, the absolute static accuracy of a data converter is dependent on the combination of many parameters such as integral nonlinearity, differential nonlinearity, offset error, gain error, as well as voltage reference changes.

Turn-On Time

These devices turn on and settle to within 0.1% of their final value in less than 1ms. The turn-on time increases when heavily loaded and operating close to dropout.

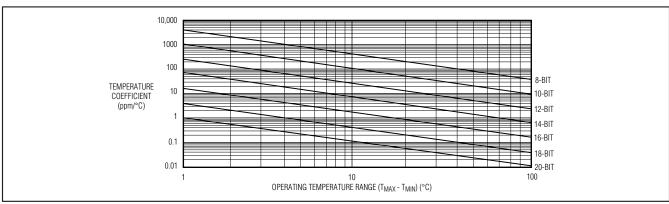
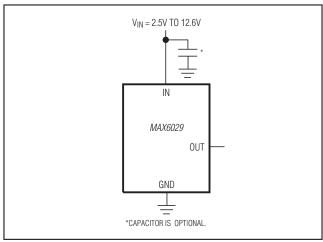



Figure 1. Temperature Coefficient vs. Operating Temperature Range for a 1 LSB Maximum Error

Typical Operating Circuit

Chip Information

PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
5 SOT23	U5+1	21-0057	90-0174
8 SO	S8+2	21-0041	90-0096

MAX6029

Ultra-Low-Power Precision Series Voltage Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	7/03	Initial release	_
1	8/06	Added SO package	1, 2, 14, 15
2	11/06	Updated voltage output limits	3, 6
3	1/09	Added lead-free notation to Ordering Information	1

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

© 2009 Maxim Integrated Products, Inc. | 15