ABSOLUTE MAXIMUM RATINGS

(Voltages Referenced to GND)	
V+0.3V to +6V	
Voltage into Any Terminal (Note 1)0.3V to (V+ + 0.3V)	
Continuous Current into Any Terminal±20mA	
Peak Current, NO, NC, or COM	
(pulsed at 1ms, 10% duty cycle)±40mA	

Continuous Power Dissipation (TA = +70°C)
5-Pin SC70 (derate 3.1mW/°C above +70°C)247mW
6-Pin µDFN (derate 2.1mW/°C above +70°C)168mW
Operating Temperature Range
MAX459_EXK40°C to +85°C
Storage Temperature Range65°C to +150°C
Lead Temperature (soldering, 10s)+300°C

Note 1: Voltages exceeding V+ or GND on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—+5V Supply

 $(V+=+4.5V \text{ to } +5.5V, V_{IH}=+2.4V, V_{IL}=+0.8V, T_A=T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V+=+5V, T_A=+25^{\circ}C.$) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIO	MIN	TYP	MAX	UNITS		
ANALOG SWITCH	1						1	
Analog Signal Range	V _{COM} , V _{NO} , V _{NC}			0		V+	V	
On-Resistance	Davi	V+ = 4.5V, V _{NO} , or V _{NC} = 3.5V:	T _A = +25°C		6.5	10	Ω	
On-nesistance	Ron	$I_{COM} = 10 \text{mA}$	TA = TMIN to TMAX			12		
On-Resistance Flatness	Dei Ationii	V_{NO} or $V_{NC} = 1.5V$, 2.5V, 3.5V; $V_{+} = 4.5V$;	T _A = +25°C		0.5	1.5	Ω	
(Note 4)	RFLAT(ON)	100M = 10mA	TA = TMIN to TMAX			2		
NO or NC Off-Leakage	INO(OFF)	V+ = 5.5V; VCOM = 1V, 4.5V;	T _A = +25°C	-0.5	0.01	0.5	nA	
Current	INC(OFF)	$V_{NO} = 1V, 4.5V,$ $V_{NO} \text{ or } V_{NC} = 4.5V, 1V$	TA = TMIN to TMAX	-5		5		
COM Off-Leakage Current	loov voet.	V+ = 5.5V; VCOM = 1V, 4.5V;	T _A = +25°C	-0.5	0.01	0.5	nA	
	ICOM(OFF)	$V_{NO} = 1V, 4.5V,$ $V_{NO} \text{ or } V_{NC} = 4.5V, 1V$	TA = TMIN to TMAX	-5		5		
COM On Lookaga Current	laarvarn	V+ = 5.5V; V _{COM} = 1V; 4.5V; V _{NO} or V _{NC} = 1V,	T _A = +25°C	-1	0.01	1	nA	
COM On-Leakage Current	ICOM(ON)	$4.5V$, V_{NO} of $V_{NC} = VV$, $4.5V$, or floating	TA = TMIN to TMAX	-10		10		
DIGITAL I/O		•						
Input Logic High	VIH			2.4			V	
Input Logic Low	VIL					0.8	V	
Input Logic Current	I _{IH} , I _{IL}	$V_{IN} = V+, 0$		-1	0.03	1	μΑ	
DYNAMIC								
Turn-On Time	ton	V_{NO} or $V_{NC} = 3V$, $R_L = 300\Omega$, $C_L = 35pF$,	T _A = +25°C		20	35	ne	
	ton	Figure 3	TA = TMIN to TMAX			45	ns	
Turn-Off Time	torr	V_{NO} or $V_{NC} = 3V$, $R_L = 300\Omega$, $C_L = 35pF$,	T _A = +25°C		25	40	ns	
	toff	Figure 3	$T_A = T_{MIN}$ to T_{MAX} 5		50	110		
On-Channel -3dB Bandwidth	BW	Signal = 0dBm, 50Ω in and out, Figure 4	T _A = +25°C		300		MHz	

2 /V|/**X|/V**|

ELECTRICAL CHARACTERISTICS—+5V Supply (continued)

 $(V+ = +4.5V \text{ to } +5.5V, V_{IH} = +2.4V, V_{IL} = +0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V+ = +5V T_A = +25^{\circ}C$.) (Notes 2, 3)

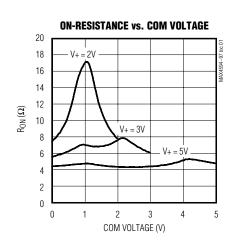
PARAMETER	SYMBOL	CONDITIO	CONDITIONS			TYP	MAX	UNITS		
Charge Injection (Note 5)	Q	V _{NO} or V _{NC} = 0, C _L = 1nF, Figure 2	T _A = +25°C			2	5	рС		
Off-Isolation	Vico	V_{NO} or $V_{NC} = 1V_{RMS}$, $R_L = 50\Omega$, $C_L = 5pF$,	T _A =	MAX4594/ MAX4595		80	dB			
(Note 6)	V150	f = 1MHz. Figure 4	MAX4596/ MAX4597		83		1 UD			
NO or NC Off-Capacitance	Cno(off), Cnc(off)	V_{NO} or V_{NC} = 0, f = 1MHz, T_{A} = +25°C				8		pF		
COM Off-Capacitance	Ссом(оғғ)	$V_{COM} = 0$, $f = 1MHz$, Figure 5 $T_A = +25$ °C				8		pF		
COM On-Capacitance	C _{COM(ON)}	$V_{COM} = 0$, $f = 1MHz$, $T_A = +25$ °C		5°C		20		pF		
Total Harmonic Distortion Plus Noise	THD	$V = 5Vp-p, R_L = 600\Omega,$ $f = 20Hz \text{ to } 20\text{kHz}$ $T_A = +25^{\circ}\text{C}$			0.05		%			
POWER SUPPLY			•							
Power-Supply Range	V+				2.0		5.5	V		
V+ Supply Current	l+	$V+ = 5.5V$, $V_{IN} = 0$ or $V+$ $T_A = T_{MIN}$ to T_{MAX}			-1		1	μΑ		

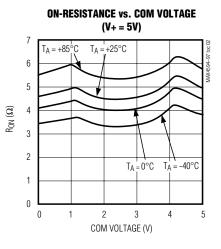
ELECTRICAL CHARACTERISTICS—+3V Supply

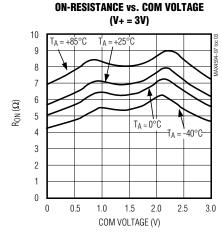
 $(V+ = +2.7V \text{ to } +3.6V, V_{IH} = +2.0V, V_{IL} = +0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $V+ = +3.0V, T_A = +25^{\circ}C.$) (Notes 2, 3)

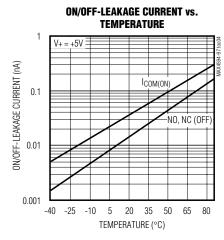
PARAMETER	SYMBOL	CONDITIO	MIN	TYP	MAX	UNITS		
ANALOG SWITCH								
Analog Signal Range	VCOM, VNO, VNC			0		V+	V	
On-Resistance	Pou	VNO or VNC = 1.5V, ICOM =	$T_A = +25^{\circ}C$		10	20	Ω	
On-nesistance	Ron	10mA, V+ = 2.7V	$T_A = T_{MIN}$ to T_{MAX}			25] 52	
DIGITAL I/O				•			<u> </u>	
Input Logic High	VIH			2.0			V	
Input Logic Low	VIL					0.8	V	
Input Logic Current	I _{IH} , I _{IL}	$V_{IN} = V+, 0$		-1	0.03	1	μΑ	
DYNAMIC		1						
Turn-On Time	toni	VNO or VNC = 2V, RL =	$T_A = +25^{\circ}C$		25	45	ns	
Turr-Ori fillie	ton	300Ω , C _L = 35pF, Figure 3	$T_A = T_{MIN}$ to T_{MAX}			55	1115	
Turn-Off Time	torr	V _{NO} or V _{NC} = 2V, R _L =	T _A = +25°C		30	50	no	
Tuiti-Oil fillie	tOFF	300Ω , C _L = 35pF, Figure 3	TA = TMIN to TMAX			60	ns	
Charge Injection (Note 5)	Q	V_{NO} or $V_{NC} = 0$, $C_L = 1nF$, Figure 2	T _A = +25°C		2	4	рС	

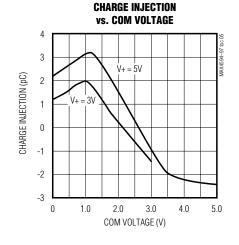
ELECTRICAL CHARACTERISTICS—+3V Supply (continued)

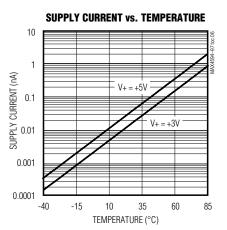

 $(V+ = +2.7V \text{ to } +3.6V, V_{IH} = +2.0V, V_{IL} = +0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } V+ = +3.0V, T_A = +25^{\circ}C.)$ (Notes 2, 3)

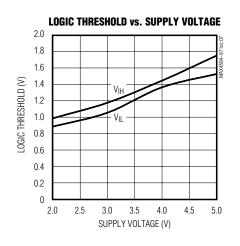

PARAMETER	SYMBOL	CONDITIO	MIN	TYP	MAX	UNITS	
POWER SUPPLY							
V+ Supply Current	l+	$V+ = 3.6V, V_{IN} = 0 \text{ or } V+$	$T_A = T_{MIN}$ to T_{MAX}	-1		1	μΑ

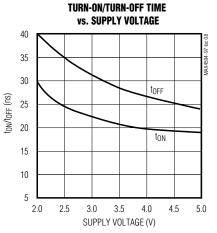

- Note 2: Parameters are 100% tested at +25°C only, and guaranteed by correlation at the full-rated temperature.
- Note 3: Algebraic convention is used in this data sheet; the most negative value is shown in the minimum column.
- **Note 4:** Flatness is defined as the difference between the maximum and minimum values of on-resistance as measured over the specified analog signal ranges.
- Note 5: Guaranteed by design.
- Note 6: Off-Isolation = 20log₁₀ (V_{COM} / V_{NO}), V_{COM} = output, V_{NO} = input to off switch.

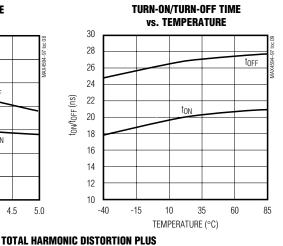

Typical Operating Characteristics


 $(V+ = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$

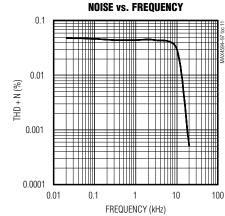








Typical Operating Characteristics (continued)


 $(V+ = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$

FREQUENCY RESPONSE 0 -10 -30 -50 -70 -90 -110 0.01 0.1 1 1 0 100 1000 FREQUENCY (MHz)

Pin Description

			Р	IN					
MAX	MAX4594		MAX4595		4596	MAX	4597	NAME	FUNCTION
SC70	μDFN	SC70	μDFN	SC70	μDFN	SC70	μDFN		
1	1	1	1	2	2	2	2	COM	Analog Switch, Common
2	2	_	_	4	4	_	_	NO	Analog Switch, Normally Open
3	3	3	3	3	3	3	3	GND	Ground
4	4	4	4	1	1	1	1	IN	Digital Control Input
5	6	5	6	5	6	5	6	V+	Positive Supply Voltage
_	_	2	2	_	_	4	4	NC	Analog Switch, Normally Closed
_	5	_	5	_	5	_	5	N.C.	No Connection. Not internally connected.
EP	EP	EP	EP	EP	EP	EP	EP	PAD	Exposed Pad. Connect to GND (µDFN only.)

Note: NO, NC, and COM pins are identical and interchangeable. Any pin may be considered as an input or an output; signals pass equally well in both directions.

_Applications Information

Analog Signal Levels

Analog signals can range over the supply voltage (V+ to GND) with on-resistance changing very little over the entire range (see *Typical Operating Characteristics*). The MAX4594–MAX4597 are bidirectional, so the NO, NC, and COM pins can be used either as inputs or outputs.

Figure 1. Overvoltage Protection Using Two External Blocking Diodes

Power-Supply Sequencing and Overvoltage Protection

Proper power-supply sequencing is recommended for all CMOS devices. Always apply V+ before applying analog signals or logic inputs, especially if the analog or logic signals are not current limited. If this sequencing is not possible, and if the analog or logic inputs are not current limited to <20mA, add a small-signal diode (D1) as shown in Figure 1. If the analog signal can dip below GND, add D2. Adding protection diodes reduces the analog signal range to a diode drop (about 0.7V) below V+ for D1 or to a diode drop above ground for D2. The addition of diodes does not affect leakage. On-resistance increases by a small amount at low supply voltages. Maximum supply voltage (V+) must not exceed 6V.

Protection diodes D1 and D2 also protect against some overvoltage situations. A fault voltage up to the absolute maximum rating at an analog signal input does not damage the device, even if the supply voltage is below the signal voltage.

Test Circuits/Timing Diagrams

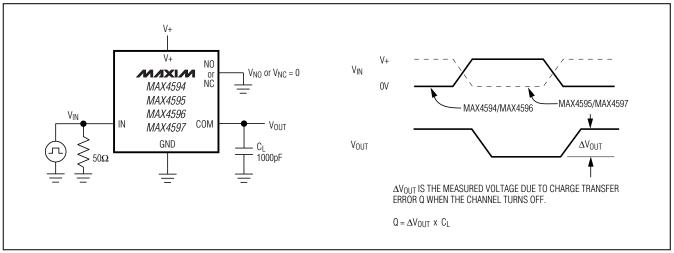


Figure 2. Charge Injection

__ /N/|X|/W

Test Circuits/Timing Diagrams (continued)

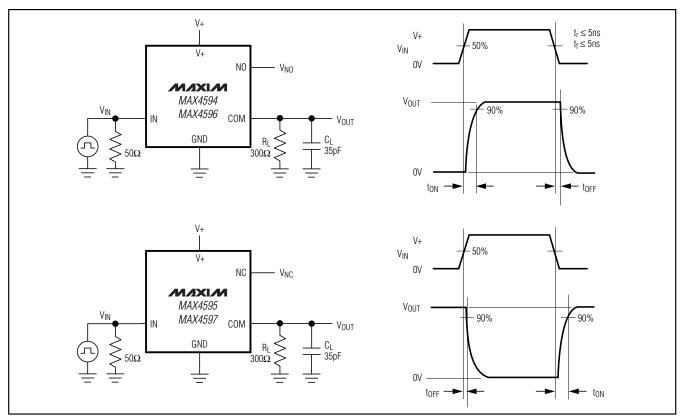


Figure 3. Switching Times

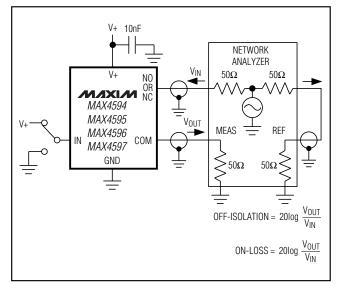


Figure 4. Off-Isolation and On-Channel Bandwidth

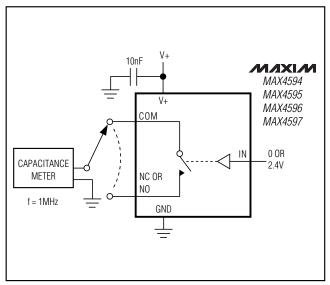
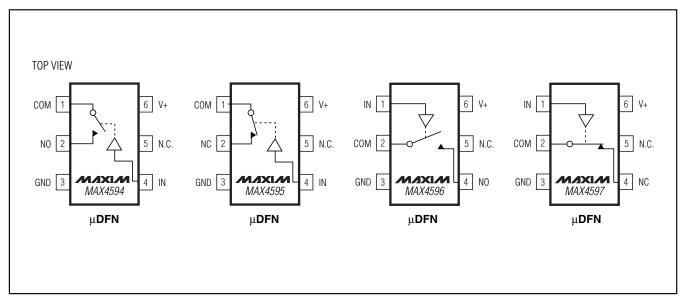
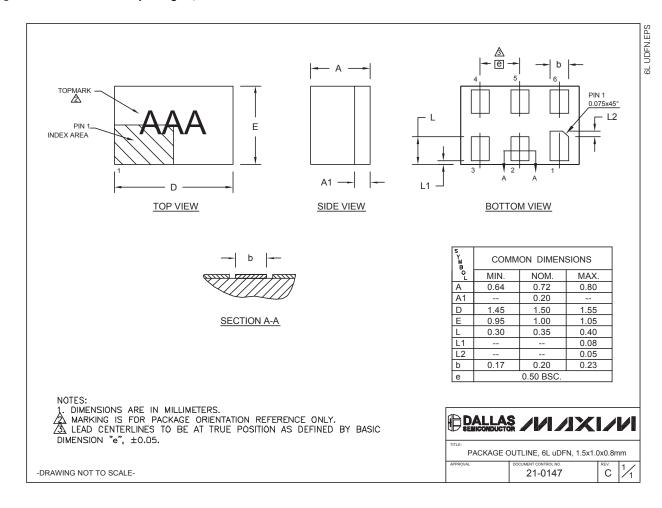



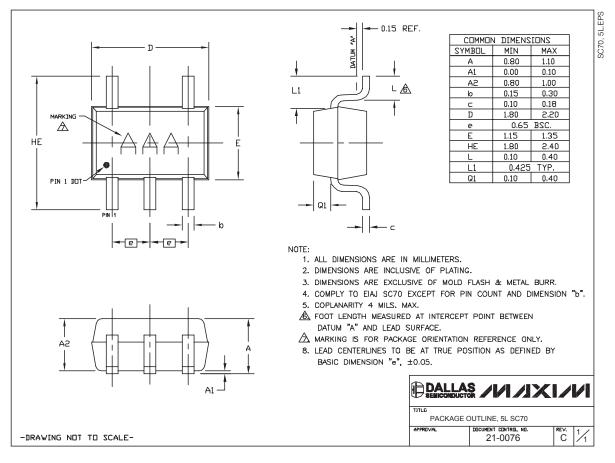
Figure 5. Channel On-/Off-Capacitance

Pin Configurations/Functional Diagrams/Truth Table (continued)


Chip Information

TRANSISTOR COUNT: 50

8 ______ NIXI/N


Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

10 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600