ABSOLUTE MAXIMUM RATINGS

IN, OUT, AOUT to GND0.3V to +6V	Continuous Power Dissipation (T _A = +70°C)
SHDN to PGND0.3V to +6V	μMAX (derate 4.8mW/°C above +70°C)387.8mW
PGND to GND0.3V to +0.3V	TQFN-EP (derate 24.4mW/°C above +70°C)1951.2mW
CXN to PGND0.3V to (Lower of IN + 0.8V or 6.3V)	Operating Temperature Range40°C to +85°C
CXP to GND0.8V to (Higher of OUT + 0.8V	Junction Temperature+150°C
or IN + 0.8V but not greater than 6V)	Storage Temperature Range65°C to +150°C
Continuous Output Current150mA	Lead Temperature (soldering, 10s)+300°C
	Soldering Temperature (reflow)+260°C

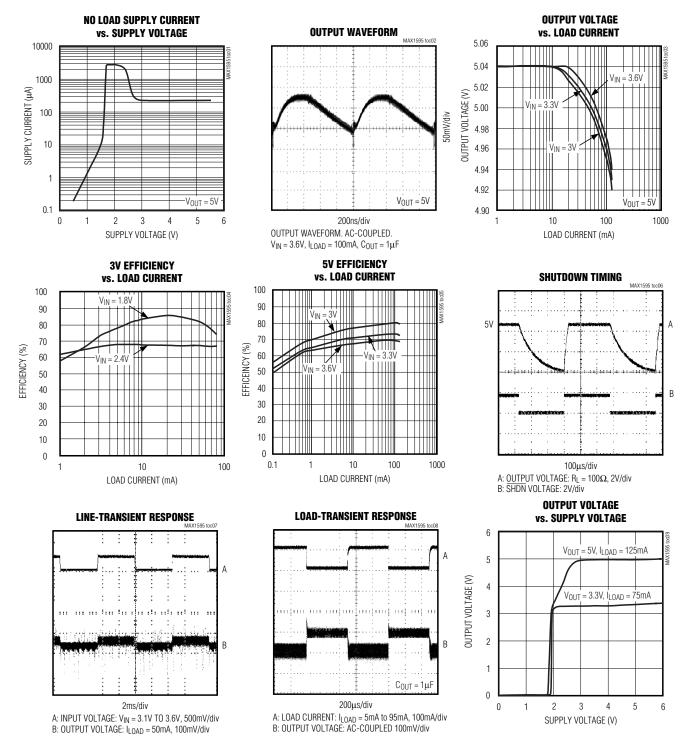
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE THERMAL CHARACTERISTICS (Note 1)

TQFN	μMAX
Junction-to-Ambient Thermal Resistance (θJA)41°C/W	Junction-to-Ambient Thermal Resistance (θJA)206.3°C/W
Junction-to-Case Thermal Resistance (θ _{JC})6°C/W	Junction-to-Case Thermal Resistance (θ _{JC})42°C/W

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

ELECTRICAL CHARACTERISTICS


 $(V_{IN}=2V \text{ for MAX1595}__33, V_{IN}=3V \text{ for MAX1595}__50, C_{IN}=1\mu\text{F}, C_{X}=0.22\mu\text{F}, C_{OUT}=1\mu\text{F}, T_{A}=-40^{\circ} \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.}$ Typical values are at $T_{A}=+25^{\circ}\text{C}$.) (Note 2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Voltage Range	V _{IN}			1.8		5.5	V
Input Undervoltage Lockout Threshold				1.40	1.60	1.72	V
Input Undervoltage Lockout Hysteresis					40		mV
		0 < I _{LOAD} < 125mA,	$T_A = 0$ °C to +85°C	4.85	5.05	5.15	- V
Output Voltage		$V_{IN} = +3.0V$	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	4.80		5.20	
	Vout	0 < I _{LOAD} < 75mA, V _{IN} = +2.0V	$T_A = 0$ °C to +85°C	3.20	3.33	3.40	
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.16		3.44	
		0 < I _{LOAD} < 30mA, V _{IN} = +1.8V	$T_A = 0$ °C to +85°C	3.20	3.33	3.40	
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	3.16		3.44	
No-Load Input Current	V _{IN} = +2.0V, MAX159533			220	320		
No-Load Input Current	IQ	V _{IN} = +3.0V, MAX159550			240	350	μΑ
Switching Frequency	fosc	I _{LOAD} > 20mA, V _{OUT} > V _{IN}		0.85	1.0	1.15	MHz
Shutdown Supply Current	ISHDN	$V_{\overline{SHDN}} = 0V$, $V_{IN} = +5.5V$, $V_{OUT} = 0V$				5	μΑ
SHDN Input Voltage Low	VINL	$V_{IN} = 2.0V \text{ to } 5.5V$				0.6	V
SHDN Input Voltage High	VINH	V _{IN} = 2.0V to 5.5V		1.6			V
SHDN Input Leakage Current						0.1	μΑ

Note 2: Specifications to -40°C are guaranteed by design, not production tested.

_Typical Operating Characteristics

(Circuit of Figure 4, V_{IN} = 2V for MAX1595_ _ _33, V_{IN} = 3V for MAX1595_ _ _50, T_A = +25°C, unless otherwise noted.)

Pin Description

PIN μΜΑΧ TQFN-EP		NAME	FUNCTION		
		INAIVIE	FUNCTION		
1	12	AOUT	Analog Power and Sense Input for Error Amplifier/Comparator. Connect to OUT at output filter capacitor.		
2	1	SHDN	Shutdown Input. When SHDN = low, the device turns off; when SHDN = high, the device activates. In shutdown, OUT is disconnected from IN.		
3	2, 3	IN	Input Supply. Can range from 1.8V to 5.5V. Bypass to GND with a 1µF capacitor.		
4	4	GND	Ground		
5	5, 6	PGND	Power Ground		
6	7, 8	CXN	Negative Terminal of the Charge-Pump Transfer Capacitor		
7	9	CXP	Positive Terminal of the Charge-Pump Transfer Capacitor		
8	10, 11	OUT	Output. Bypass to GND with output capacitor filter.		
_	_	EP	Exposed Pad. Internally connected to GND. Connect to a large ground plane to maximize thermal performance. Not intended as an electrical connection point (TQFN package only).		

Detailed Description

The MAX1595 charge pump provides either a 3.3V or 5V regulated output. It delivers a maximum 125mA load current. In addition to boost regulating from a lower supply, it is also capable of buck regulating from supplies that exceed the regulated output by a diode drop or more. Designed specifically for compact applications, a complete regulator circuit requires only three small external capacitors. An innovative control scheme provides constant frequency operation from medium to heavy loads, while smoothly transitioning to low-power mode at light loads to maintain optimum efficiency. In buck mode, switch S1 (Figure 1) is switched continuously to IN, while switch S2 alternates between IN and OUT. An amount of charge proportional to the difference between the output voltage and the supply voltage is stored on Cx, which gets transferred to the output when the regulation point is reached. Maximum output ripple is proportional to the difference between the supply voltage and the output voltage, as well as to the ratio of the transfer capacitor (C_X) to the output capacitor (C_{OUT}) .

The MAX1595 consists of an error amplifier, a 1.23V bandgap reference, internal resistive feedback network, oscillator, high-current MOSFET switches, and shutdown and control logic. Figure 1 shows an idealized unregulated charge-pump voltage doubler. The oscillator runs at a 50% duty cycle. During one half of the period, the transfer capacitor (Cx) charges to the input voltage. During the other half, the doubler transfers the sum of C_{χ} and input voltage to the output filter capacitor (C_{OUT}). Rather

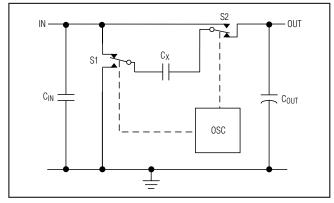


Figure 1. Unregulated Voltage Doubler

than doubling the input voltage, the MAX1595 provides a regulated output voltage of either 3.3V or 5.0V.

Shutdown

Driving SHDN low places the device in shutdown mode. The device draws 0.1µA of supply current in this mode. When driven high, the MAX1595 enters a soft-start mode. Soft-start mode terminates when the output voltage regulates, or after 2ms, whichever comes first. In shutdown, the output disconnects from the input.

Undervoltage Lockout

The MAX1595 has an undervoltage-lockout that deactivates the devices when the input voltage falls below 1.6V. Below UVLO, hysteresis holds the device in shutdown until the input voltage rises 40mV above the lockout threshold.

4 ______*NIXIN*

Applications Information

Using white LEDs to backlight LCDs is an increasingly popular approach for portable information devices (Figure 2). Because the forward voltage of white LEDs exceeds the available battery voltage, the use of a charge pump such as the MAX1595 provides high efficiency, small size, and constant light output with changing battery voltages. If the output is used only to light LEDs, the output capacitor can be greatly reduced. The frequency modulation of the LED intensity is not discernible to the human eye, and the smaller capacitor saves both size and cost.

Adding two Schottky diodes and two capacitors implements a tripler and allows the MAX1595_ _ _50 to regulate a current of 75mA with a supply voltage as low as 2.3V (Figure 3).

Capacitor Selection

The MAX1595 requires only three external capacitors (Figure 4). Their values are closely linked to the output current capacity, oscillator frequency, output noise content, and mode of operation.

Generally, the transfer capacitor (C_X) will be the smallest, and the input capacitor (C_{IN}) is twice as large as C_X . Higher switching frequencies allow the use of the smaller C_X and C_{IN} . The output capacitor (C_{OUT}) can be anywhere from 5-times to 50-times larger than C_X . Table 1 shows recommended capacitor values.

In addition, the following equation approximates output ripple:

VRIPPLE ≅ IOUT / (2 x fosc x Cout)

Table 2 lists the manufacturers of recommended capacitors. Ceramic capacitors will provide the lowest ripple due to their typically lower ESR.

Power Dissipation

The power dissipated in the MAX1595 depends on output current and is accurately described by:

PDISS = IOUT (2VIN - VOUT)

P_{DISS} must be less than that allowed by the package rating.

Layout Considerations

All capacitors should be soldered in close proximity to the IC. Connect ground and power ground through a short, low-impedance trace. The input supply trace should be as short as possible. Otherwise, an additional input supply filter capacitor (tantalum or electrolytic) may be required.

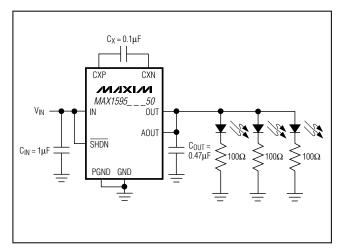


Figure 2. White LED Bias Supply

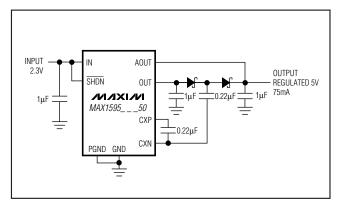


Figure 3. Regulated Voltage Tripler

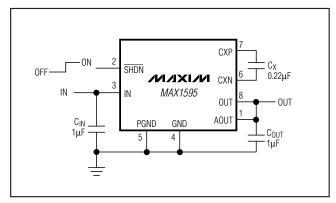
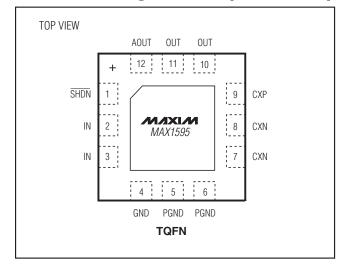


Figure 4. Standard Operating Circuit


Table 1. Recommended Capacitor Values

OUTPUT RIPPLE (mV)	C _{IN} (μF)	С _Х (µF)	C _{OUT} (µF)
70	1	0.22	1
35	2.2	0.47	2.2

Table 2. Recommended Capacitor Manufacturers

VALUE (μF)	VOLTAGE (V)	TYPE	SIZE	MANUFACTURER	PART
1	10	X7R	0805	Taiyo Yuden	LMK212BJ105MG
0.22	10	X7R	0603	Taiyo Yuden	LMK107BJ224MA
0.47	10	X7R	0603	Taiyo Yuden	LMK107BJ474MA
0.1	10	X7R	0603	Taiyo Yuden	LMK107BJ104MA

Pin Configurations (continued)

Chip Information

PROCESS: CMOS

_Package Information

For the latest package outline information and land patterns (footprints), go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 µMAX	U8+1	21-0036	90-0092
12 TQFN	1244+4	21-0139	90-0068

NIXIN

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
2	6/09	Added EP (exposed pad) and top mark information	1, 2, 4, 6
3	10/11	Updated Absolute Maximum Ratings section and added Package Thermal Characteristics section	2

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600