

1. DESCRIPTION

1.1 Features

- Current transfer ratio (CTR : $40\% \sim 320\%$ at $I_F = 10$ mA, $V_{CE} = 5$ V, $T_A = 25$ °C)
- High input-output isolation voltage Viso = 5,000Vrms
- High collector-emitter voltage (V_{CEO} = 70V)
- \blacksquare Response time (tr : TYP. 2 μ s at V_{CC} = 5V, I_F = 10mA, R_L = 75 Ω)
- Dual-in-line package :

LTV-702V

■ Wide lead spacing package :

LTV-702VM

■ Surface mounting package :

LTV-702VS

■ Tape and reel packaging :

LTV-702VS-TA, LTV-702VS-TA1

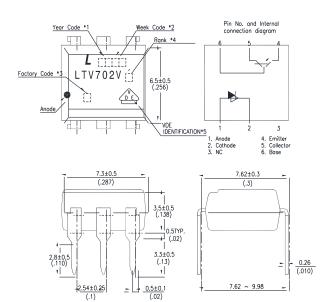
- Safety approval
 - * UL approved (No. E113898)
 - * TUV approved (No. R9653630)
 - * CSA approved (No. CA91533-1)
 - * FIMKO approved (No. 193422-01)
 - * NEMKO approved (No. P96103013)
 - * DEMKO approved (No. 303968)
 - * SEMKO approved (No. 9646047 / 01-30)
 - * VDE approved (No. 094722)
- RoHS Compliance

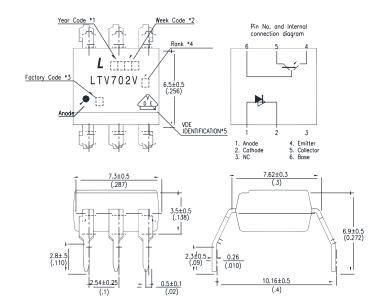
All materials be used in device are followed EU RoHS directive (No.2002/95/EC).

- ESD pass HBM 8000V/MM2000V
- MSL class1

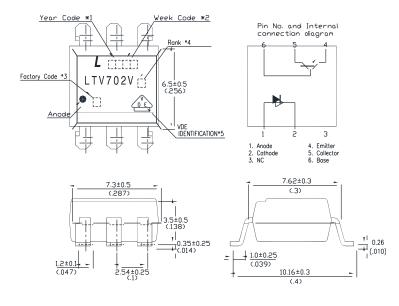
1.2 Applications

■ Directly connectable to TTL


1/13



2. PACKAGE DIMENSIONS

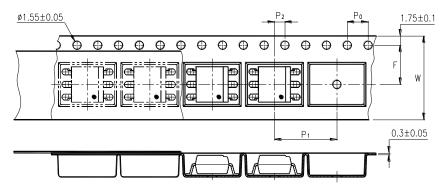

2.1 LTV-702V

2.2 LTV-702VM

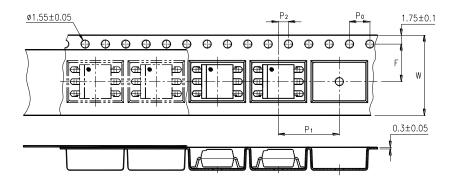
2.3 LTV-702VS

Notes:

- 1. Year date code.
- 2. 2-digit work week.
- 3. Factory identification mark shall be marked (Y: Thailand, W: China-CZ).
- 4. Rank shall be or shall not be marked.
- 5. For VDE option.


Dimensions in millimeters (inches).

2/13



3. TAPING DIMENSIONS

3.1 LTV-702VS-TA

3.2 LTV-702VS-TA1

Description	Symbol	Dimension in mm (inch)	
Tape wide	W	16±0.3 (0.63)	
Pitch of sprocket holes	P ₀	4±0.1 (0.15)	
Distance of compartment	F	7.5±0.1 (0.295)	
Distance of compartment	P ₂	2±0.1 (0.079)	
Distance of compartment to compartment	P ₁	12±0.1 (0.472)	

3.3 Quantities Per Reel

Package Type	TA / TA1
Quantities (pcs)	1000

3/13

4. RATING AND CHARACTERISTICS

4.1 Absolute Maximum Ratings at Ta=25°C

Parameter		Symbol	Rating	Unit		
	Forward Current	I _F	60	mA		
lamid	Reverse Voltage	V_R	6	V		
Input	Power Dissipation	Р	105	mW		
	Junction Temperature T _J		125	°C		
	Collector - Emitter Voltage	V _{CEO}	70	V		
	Emitter - Collector Voltage	V _{ECO}	6	V		
Output	Collector - Base Voltage	V _{CBO}	70	V		
	Emitter - Base Voltage	V_{EBO}	6	V		
	Collector Current	Ic	50	mA		
	Collector Power Dissipation	Pc	160	mW		
Total Power Dissipation		P _{tot}	200	mW		
*1 Isolation Voltage		V _{iso}	5000	V_{rms}		
Operating Temperature		T_{opr}	-55 ~ +100	°C		
Storage Temperature	Storage Temperature		ge Temperature		-55 ~ +150	°C
*2 Soldering Temperatu	re	T _{sol}	260	°C		

^{*1.} AC For 1 Minute, R.H. = 40 ~ 60% Isolation voltage shall be measured using the following method.

*2. For 10 Seconds

⁽¹⁾ Short between anode and cathode on the primary side and between collector and emitter on the secondary side.

⁽²⁾ The isolation voltage tester with zero-cross circuit shall be used.

⁽³⁾ The waveform of applied voltage shall be a sine wave.

4.2 ELECTRICAL OPTICAL CHARACTERISTICS at Ta=25°C

PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITIONS	
	Forward Voltage	V_{F}	_	1.4	1.7	V	I _F =60mA	
INPUT	Reverse Current	I _R	_	_	10	μА	V _R =6V	
	Terminal Capacitance	Ct	_	30	250	pF	V=0, f=1KHz	
	Collector Dark Current	I _{CEO}	_	_	50	nA	V _{CE} =10V, I _F =0	
OUTPUT	Collector-Emitter Breakdown Voltage	BV _{CEO}	70	_	_	V	I _C =0.1mA I _F =0	
	Emitter-Collector Breakdown Voltage	BV _{ECO}	6	_	_	V	I _E =10μΑ I _F =0	
	Collector-Base Breakdown Voltage	BV _{CBO}	70	_	_	V	I _C =0.1mA I _F =0	
TRANSFER CHARACTERISTICS	Collector Current	lc	4	_	32	mA		
	*Current Transfer Ratio	CTR	40	_	320	%	I _F =10mA, V _{CE} =5V	
	Collector-Emitter Saturation Voltage	VCE(sat)	_	0.25	0.4	V	I _F =10mA I _C =2.5mA	
	Isolation Resistance	R _{ISO}	5×10 ¹⁰	1×10 ¹¹	_	Ω	DC500V 40 ~ 60% R.H.	
	Floating Capacitance	C _F	_	0.6	1	pF	V=0, f=1MHz	
	Cut-Off Frequency	f _C	_	150	_	kHz	V_{CC} =5V, I_F =10mA R_L =75 Ω , -3dB	
	Response Time (Rise)	t _R	_	2	7	μS	V _{CC} =5V, I _F =10mA	
	Response Time (Fall)	t _f	_	2	8	μS	R _L =75Ω	

$$*CTR = \frac{I_C}{I_F} \times 100\%$$

5/13

5. RANK TABLE OF CURRENT TRANSFER RATIO CTR

CTR Rank	Min	Max	Condition		
А	40	80			
В	63	125			
С	100	200	I _F =10mA, V _{CE} =5V, T _A =25°C		
D	160	320			
No mark	40	320	1		

6. CHARACTERISTICS CURVES

Fig.1 Forward Current vs.

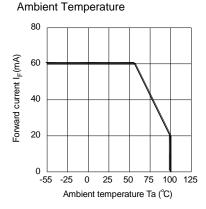


Fig.3 Collector-emitter Saturation Voltage vs. Forward Current

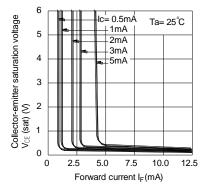


Fig.5 Current Transfer Ratio vs.
Forward Current

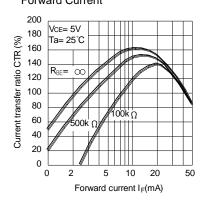


Fig.2 Collector Power Dissipation vs.
Ambient Temperature

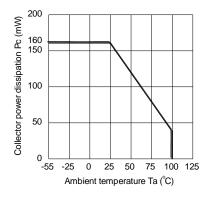


Fig.4 Forward Current vs.
Forward Voltage

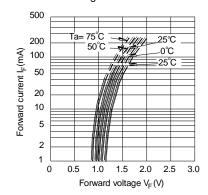
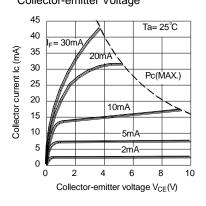



Fig.6 Collector Current vs.

Collector-emitter Voltage

7/13

Fig.7 Relative Current Transfer Ratio vs.
Ambient Temperature

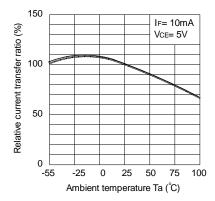


Fig.9 Collector Dark Current vs.

Ambient Temperature

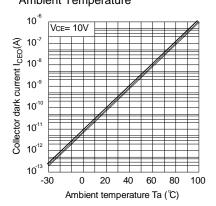


Fig.11 Frequency Response

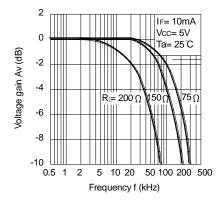


Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature

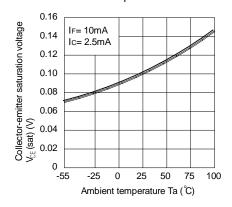
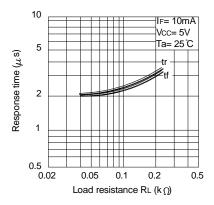
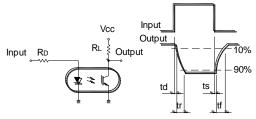
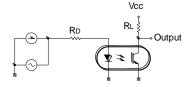




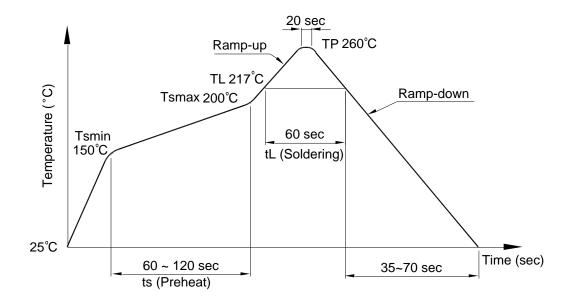
Fig.10 Response Time vs.


Load Resistance

Test Circuit for Response Time

Test Circuit for Frequency Response

8/13



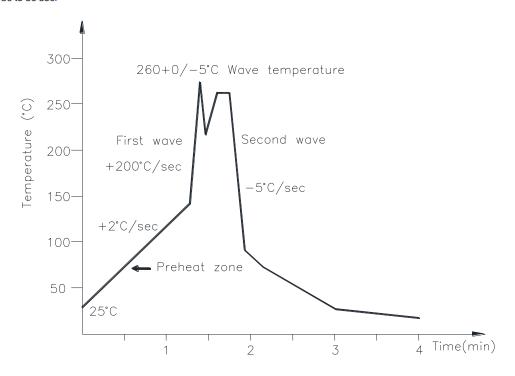
7. TEMPERATURE PROFILE OF SOLDERING

7.1 IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T _{Smin})	150°C
- Temperature Max (T _{Smax})	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (T _L)	217°C
- Time (t _L)	60 sec
Peak Temperature (T _P)	260°C
Ramp-up rate	3°C / sec max.
Ramp-down rate	3~6°C / sec

7.2 Wave soldering (JEDEC22A111 compliant)


One time soldering is recommended within the condition of temperature.

Temperature: 260+0/-5°C

Time: 10 sec.

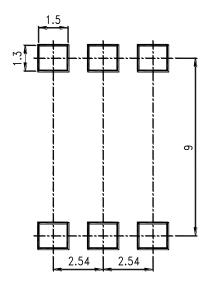
Preheat temperature:25 to 140°C

Preheat time: 30 to 80 sec.

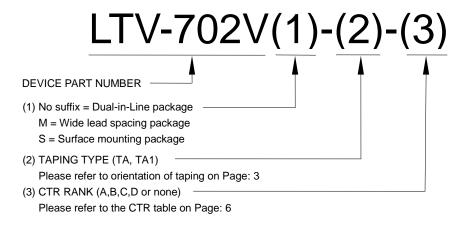
7.3 Hand soldering by soldering iron

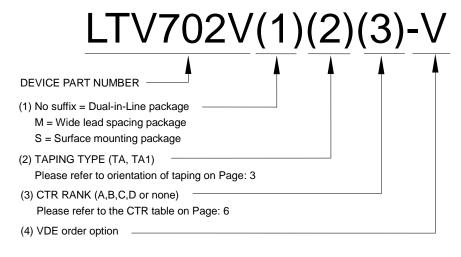
Allow single lead soldering in every single process. One time soldering is recommended.

Temperature: 380+0/-5°C


Time: 3 sec max.

8. RECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)


Unit: mm



9. NAMING RULE

Example: LTV-702VS-TA1-A

Example: LTV702VSTA1A-V

10. NOTES

- LiteOn is continually improving the quality, reliability, function or design and LiteOn reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, Medical equipment, etc, please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales in advice.
- If there are any questions about the contents of this publication, please contact us at your convenience.
- The contents described herein are subject to change without prior notice.
- Immerge unit's body in solder paste is not recommended.