
ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC}) 5V Input Voltage
Driver0.3V to V _{CC} + 0.3V
Receiver – 25V to 25V
Digital Input0.3V to V _{CC} + 0.3V
Output Voltage
Driver 25V to 25V
Receiver $-0.3V$ to V _{CC} + 0.3V
Short-Circuit Duration
V ⁺
V ⁻
Driver Output Indefinite
Receiver Output Indefinite
Operating Temperature Range
LTC1386C
LTC1386I – 40°C to 85°C
Storage Temperature Range – 65°C to 150°C
Lead Temperature (Soldering, 10 sec) 300°C

PACKAGE/ORDER INFORMATION

Consult LTC Marketing for parts specified with wider operating temperature ranges.

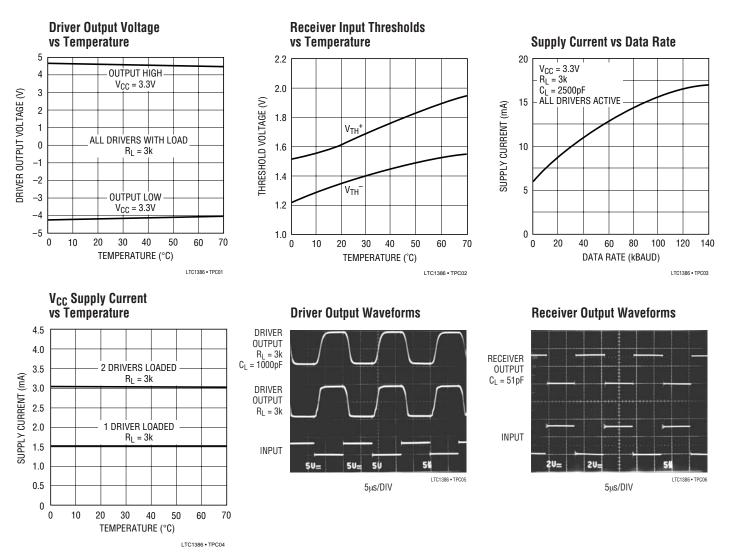
DC ELECTRICAL CHARACTERISTICS The • denotes specifications which apply over the full operating

temperature range. V_{CC} = 3.3V, C1 = C2 = C3 = C4 = 0.1 μ F, unless otherwise noted.

PARAMETER	CONDITIONS			MIN	ТҮР	MAX	UNITS
Any Driver							
Output Voltage Swing	3k to GND	Positive Negative	•	3.7 -3.7	4.5 - 4.5		V V
Logic Input Voltage Level	Input Low Level (V _{OUT} = High) Input High Level (V _{OUT} = Low)		•	2.0	1.4 1.4	0.8	V V
Logic Input Current	$V_{IN} = V_{CC}$ $V_{IN} = 0V$		•		-20	5 -40	μΑ μΑ
Output Short-Circuit Current	$V_{OUT} = 0V$			±9	±10		mA
Any Receiver							
Input Voltage Thresholds	Input Low Threshold Input High Threshold		•	0.8	1.3 1.7	2.4	V V
Hysteresis				0.1	0.4	1	V
Input Resistance	$-10V \le V_{\rm IN} \le 10V$			3	5	7	kΩ
Output Voltage	Output Low, $I_{OUT} = -1.6$ mA ($V_{CC} = 3.3$ V) Output High, $I_{OUT} = 160\mu$ A ($V_{CC} = 3.3$ V)		•	3.0	0.2 3.2	0.4	V V
Output Short-Circuit Current	Sinking Current, V _{OUT} = V _{CC} Sourcing Current, V _{OUT} = GND			-5 2	-20 7		mA mA
Power Supply Generator							
V ⁺ Output Voltage	I _{OUT} = 0mA I _{OUT} = 5mA				5.7 5.5		V V
V ⁻ Output Voltage	$I_{OUT} = 0mA$ $I_{OUT} = -5mA$				-5.3 -5.0		V V
Power Supply							
V _{CC} Supply Current	No Load (Note 2), 0°C to 70°C No Load (Note 2), -40°C to 85°C		•		0.2 0.35	0.5 1.0	mA mA
							1386fa

AC CHARACTERISTICS

PARAMETER	CONDITIONS		MIN	ТҮР	MAX	UNITS
Slew Rate	R _L = 3k, C _L = 51pF			8	30	V/µs
	$R_{L} = 3k, C_{L} = 1000pF$		3	5		V/µs
Driver Propagation Delay	t _{HLD} (Figure 1)	•		2	3.5	μS
(TTL to EIA/TIA562)	t _{LHD} (Figure 1)	•		2	3.5	μS
Receiver Propagation Delay	t _{HLR} (Figure 2)	•		0.3	0.8	μS
(EIA/TIA562 to TTL)	t _{LHR} (Figure 2)			0.3	0.8	μS


The • denotes specifications which apply over the full operating temperature range. $V_{CC} = 3.3V$. $C1 = C2 = C3 = C4 = 0.1 \mu$ F, unless otherwise noted.

Note 1: Absolute Maximum Ratings are those values beyond which the life of the device may be impaired.

Note 2: Supply current is measured with driver and receiver outputs unloaded.

Note 3: Measurements made in the shutdown mode are performed with V_{ON/OFF}=OV.

TYPICAL PERFORMANCE CHARACTERISTICS

PIN FUNCTIONS

 V_{CC} : 3.3V Input Supply Pin. This pin should be decoupled with a 0.1 μF ceramic capacitor.

GND: Ground Pin.

V⁺: Positive Supply Output (EIA/TIA562 Drivers). V⁺ $\approx 2V_{CC} - 1V$. This pin requires an external capacitor C = 0.1µF for charge storage. The capacitor may be tied to ground or V_{CC}. With multiple devices, the V⁺ and V⁻ pins may share a common capacitor. For large numbers of devices, increasing the size of the shared common storage capacitors is recommended to reduce ripple.

V⁻: Negative Supply Output (RS232 Drivers). V⁻ \approx -(2V_{CC} - 1.3V). This pin requires an external capacitor C = 0.1µF for charge storage.

C1⁺, C1⁻, C2⁺, C2⁻: Commutating Capacitor Inputs. These pins require two external capacitors $C = 0.1 \mu$ F: one from C1⁺ to C1⁻ and another from C2⁺ to C2⁻. To maintain

charge pump efficiency, the capacitor's effective series resistance should be less than 2Ω .

TR IN: EIA/TIA562 Driver Input Pins. Inputs are TTL/ CMOS compatible. The inputs of unused drivers can be left unconnected since 300k input pull-up resistors to V_{CC} are included on chip.

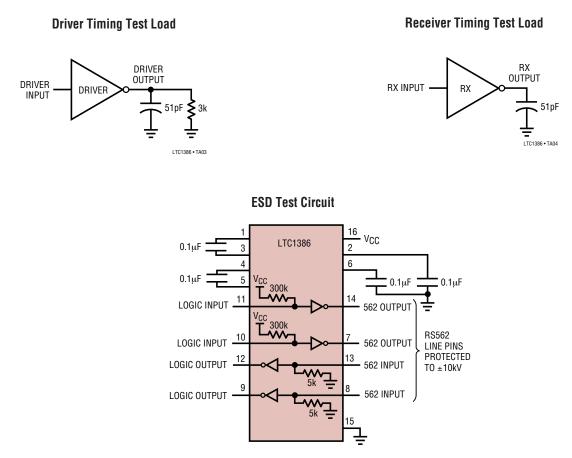
TR OUT: Driver Outputs at EIA/TIA562 Voltage Levels. The driver outputs are protected against ESD to ± 10 kV for human body model discharges.


RX IN: Receiver Inputs. These pins can be forced to $\pm 25V$ without damage. The receiver inputs are protected against ESD to $\pm 10kV$ for human body model discharges. Each receiver provides 0.4V of hysteresis for noise immunity.

RX OUT: Receiver Outputs with TTL/CMOS Voltage Levels.

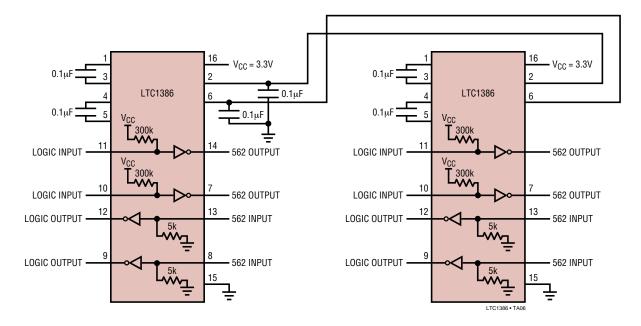
SWITCHING TIME WAVEFORMS

Figure 1. Driver Propagation Delay Timing



1386fa

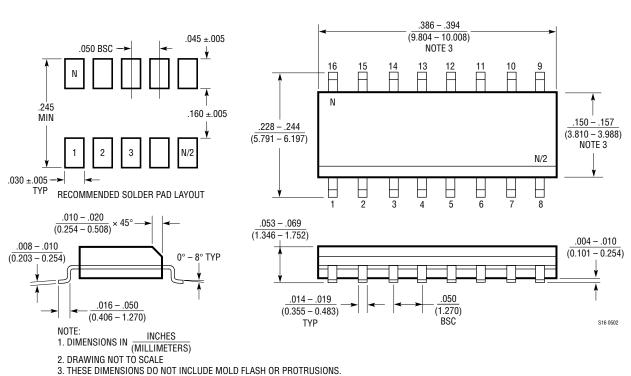
TEST CIRCUITS



1386 TA05

1386fa

TYPICAL APPLICATIONS



Paralleling Power Supply Generator with Common Storage Capacitors

1386fa

PACKAGE DESCRIPTION

S Package 16-Lead Plastic Small Outline (Narrow .150 Inch) (Reference LTC DWG # 05-08-1610)

3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1780/LT1781	5V, 2 Driver, 2 Receiver RS232 Transeivers	±15kV ESD per IEC 1000-4
LTC1327	3.3V, 3 Driver, 5 Receiver RS562 Transceiver	300μA Supply Current, 0.2μA in Shutdown
LTC1348	3.3V to 5V, 3 Driver, 5 Receiver RS232 Transceiver	True RS232 on 3.3V, 5 Receivers Active in Shutdown
LTC1382	5V, 2 Driver, 2 Receiver RS232 Transceiver	220μA Supply Current, 0.2μA in Shutdown
LTC1383	5V, 2 Driver, 2 Receiver RS232 Transceiver	220µA Supply Current, Narrow 16-pin SO
LTC1384	5V, 2 Driver, 2 Receiver RS232 Transceiver	220µA Supply Current, 2 Receivers Active in Shutdown
LTC1385	3.3V, 2 Driver, 2 Receiver RS562 Transceiver	220µA Supply Current, 2 Receivers Active in Shutdown

