

LP62S1024B-T Series

128K X 8 BIT LOW VOLTAGE CMOS SRAM

Features

■ Power supply range: 2.7V to 3.6V ■ Access times: 55/70 ns (max.)

■ Current:

Very low power version: Operating: 30mA(max.) Standby: 5uA (max.)

■ Full static operation, no clock or refreshing required

■ All inputs and outputs are directly TTL-compatible

■ Common I/O using three-state output

■ Output enable and two chip enable inputs for easy application

 ■ Data retention voltage: 2V (min.)
 ■ Available in 32-pin SOP, TSOP, TSSOP (8 X 13.4mm) forward type and 36-pin CSP packages

General Description

The LP62S1024B-T is a low operating current 1,048,576-bit static random access memory organized as 131,072 words by 8 bits and operates on a low power voltage: 2.7V to 3.6V. It is built using AMIC's high performance CMOS process. Inputs and three-state outputs are TTL compatible and allow for direct interfacing with common system bus structures. Two chip enable inputs are provided for POWER-DOWN and device enable and an output enable input is included for easy interfacing.

Data retention is guaranteed at a power supply voltage as low as 2V.

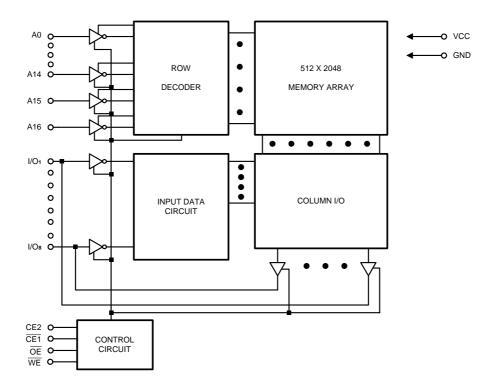
Product Family

Product Family	Product Family Operating VCC			Powe	Package		
1 Toddot Talling	Temperature	Range	Speed	Data Retention (Iccdr, Typ.)	Standby (Is _{B1} , Typ.)	Operating (Icc2, Typ.)	Type
							32L SOP
LP62S1024B	-25°C ~ +85°C	2.7V~3.6V	55ns / 70ns	0.05μΑ	0.08μΑ	1.5mA	32L TSOP
				·			32L TSSOP
							36B μBGA

- 1. Typical values are measured at VCC = 3.0V, T_A = 25°C and not 100% tested.
- 2. Data retention current VCC = 2.0V.

Pin Configurations

■ TSOP/TSSOP



■ CSP (Chip Size Package) 36-pin Top View

	1	2	3	4	5	6
Α	A0	A1	CE2	А3	A6	A8
В	I/Os	A2	WE	A4	A7	I/O ₁
С	I/O ₆		NC	A5		I/O ₂
D	GND					vcc
Е	VCC					GND
F	I/O ₇		NC	NC		I/O ₃
G	I/Os	ŌĒ	CE1	A16	A15	I/O ₄
Н	A9	A10	A11	A12	A13	A14

Pin No.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Pin Name	A11	A9	A8	A13	WE	CE2	A15	vcc	NC	A16	A14	A12	A7	A6	A5	A4
Pin No.	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Pin Name	А3	A2	A1	A0	I/O1	I/O2	I/O3	GND	I/O4	I/O5	I/O6	I/O7	I/O8	CE1	A10	ŌĒ

Block Diagram

Pin Descriptions - SOP

Pin No.	Symbol	Description
1	NC	No Connection
2 - 12, 23, 25 - 28, 31	A0 - A16	Address Inputs
13 - 15, 17 - 21	I/O1 - I/O8	Data Input/Outputs
16	GND	Ground
22	CE1	Chip Enable
24	ŌĒ	Output Enable
29	WE	Write Enable
30	CE2	Chip Enable
32	VCC	Power Supply

Pin Description – TSOP/TSSOP

Pin No.	Symbol	Description		
1 - 4, 7, 10 - 20, 31	A0 - A16	Address Inputs		
5	WE	Write Enable		
6	CE2	Chip Enable		
8	VCC	Power Supply		
9	NC	No Connection		
21 - 23, 25 - 29	I/O1 - I/O8	Data Input/Outputs		
24	GND	Ground		
30	CE1	Chip Enable		
32	ŌĒ	Output Enable		

Pin Description - CSP

Symbol	Description	Symbol	Description
A0 - A16	Address Inputs	NC	No Connection
WE	Write Enable	I/O1 - I/O8	Data Input/Output
ŌĒ	Output Enable	VCC	Power Supply
CE1	Chip Enable	GND	Ground
CE2	Chip Enable		

Recommended DC Operating Conditions

 $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit
VCC	Supply Voltage	2.7	3.0	3.6	V
GND	Ground	0	0	0	V
Vih	Input High Voltage	2.2	-	VCC + 0.3	V
VIL	Input Low Voltage	-0.3	-	+0.6	V
CL	Output Load	-	-	30	pF
TTL	Output Load	-	-	1	-

Absolute Maximum Ratings*

VCC to GND	0.5V to +4.6V
IN, IN/OUT Volt to GND	0.5V to VCC +0.5V
Operating Temperature, Topr	25°C to +85°C
Storage Temperature, Tstg	55°C to +125°C
Temperature Under Bias, Tbias	10°C to +85°C
Power Dissipation, Pt	0.7W

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, VCC = 2.7V \text{ to } 3.6V, GND = 0V)$

Symbol	Parameter	LP62S1024B-55LLT/70LLT		Unit	Conditions
		Min.	Max.		
	Input Leakage Current	-	1	μА	Vin = GND to VCC
ILO	Output Leakage Current	-	1	μА	$\overline{\text{CE1}}$ = Vih or $\overline{\text{CE2}}$ = Vil or $\overline{\text{OE}}$ = Vih or $\overline{\text{WE}}$ = Vil Vivo = GND to VCC
lcc	Active Power Supply Current	-	3	mA	CE1 = VIL, CE2 = VIH, Ivo = 0mA
lcc1	Dynamic Operating		30	mA	Min. Cycle, Duty = 100% CE1 = ViL, CE2 = Viн Ivo = 0mA
lcc2	Current	-	3	mA	CE1 = ViL, CE2 = Viн Viн = VCC, ViL = 0V f = 1 MHz, Ivo = 0mA
lsв		-	0.5	mA	$VCC \le 3.3V$, $\overline{CE1} = VIH \text{ or } CE2 = VIL$
ISB1	Standby Power Supply Current	-	5	μА	$\begin{array}{c} VCC \leq 3.3V, \ \overline{CE1} \geq VCC - 0.2V \ or \\ CE2 \leq 0.2V, \ V\text{in} \geq 0V \end{array}$
Vol	Output Low Voltage		0.4	V	loL = 2.1mA
Vон	Output High Voltage	2.2	-	V	Іон = -1.0mA

Truth Table

Mode	CE1	CE2	ŌĒ	WE	I/O Operation	Supply Current
Standby	Н	X	Х	X	High Z	lsв, lsв1
	X	L	Х	Х	High Z	Isb, Isb1
Output Disable	L	Н	Н	Н	High Z	lcc, lcc1, lcc2
Read	L	Н	L	Н	Douт	lcc, lcc1, lcc2
Write	L	Н	Х	L	Din	Icc, Icc1, Icc2

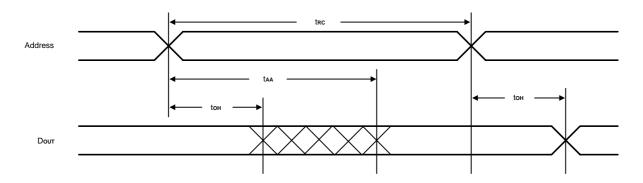
Note: X = H or L

Capacitance (T_A = 25°C, f = 1.0MHz)

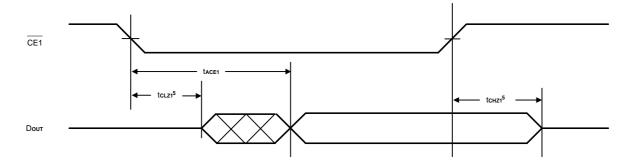
Symbol	Parameter	Min.	Max.	Unit	Conditions
Cin*	Input Capacitance		6	pF	Vin = 0V
Cı/o*	Input/Output Capacitance		8	pF	Vvo = 0V

^{*} These parameters are sampled and not 100% tested.

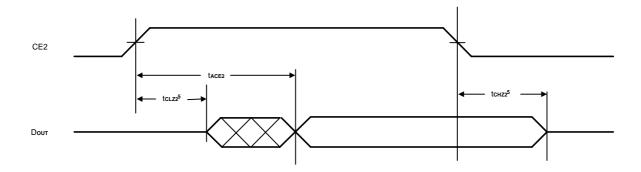
AC Characteristics (T_A = -25°C to +85°C, VCC = 2.7V to 3.6V)


Symbol	Parameter		LP62S102	24B-55LLT	LP62S102	24B-70LLT	Unit
			Min.	Max.	Min.	Max.	
Read Cycl	e						
trc	Read Cycle Time		55	-	70	-	ns
taa	Address Access Time		-	55	-	70	ns
tace1	Chip Enable Access Time	CE1	-	55	-	70	ns
tace2		CE2	-	55	-	70	ns
toe	Output Enable to Output Valid		-	30	-	35	ns
tcLz1	Chip Enable to Output in Low Z	CE1	10	-	10	-	ns
tcLz2		CE2	10	-	10	-	ns
toLZ	Output Enable to Output in Low Z		5	-	5	-	ns
tcHZ1	Chip Disable to Output in High Z	CE1	0	20	0	25	ns
tcHZ2		CE2	0	20	0	25	ns
toнz	Output Disable to Output in High Z		0	20	0	25	ns
toн	Output Hold from Address Change		5	-	10	-	ns
Write Cycl	е						
twc	Write Cycle Time		55	-	70	-	ns
tcw	Chip Enable to End of Write		50	-	60	-	ns
tas	Address Setup Time		0	-	0	-	ns
taw	Address Valid to End of Write		50	-	60	-	ns
twp	Write Pulse Width		40	-	50	-	ns
twr	Write Recovery Time		0	-	0	-	ns
twnz	Write to Output in High Z		0	25	0	25	ns
tow	Data to Write Time Overlap		25	-	30	-	ns
tрн	Data Hold from Write Time		0	-	0	-	ns
tow	Output Active from End of Write		5	-	5	-	ns

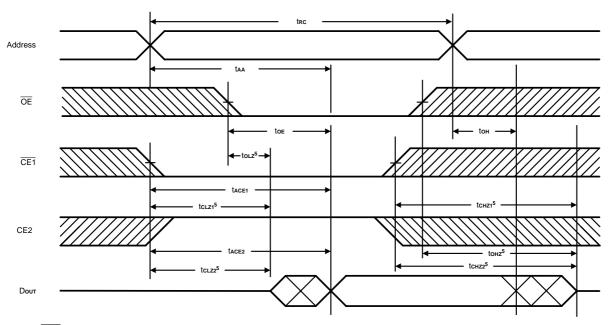
Notes: tcHz1, tcHz2, toHz, and twHz are defined as the time at which the outputs achieve the open circuit condition and are not referred to output voltage levels.



Timing Waveforms

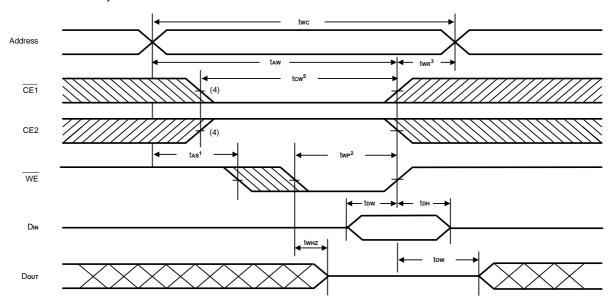

Read Cycle 1 (1, 2, 4)

Read Cycle 2 (1, 3, 4, 6)


Read Cycle 3 (1, 4, 7, 8)

Timing Waveforms (continued)

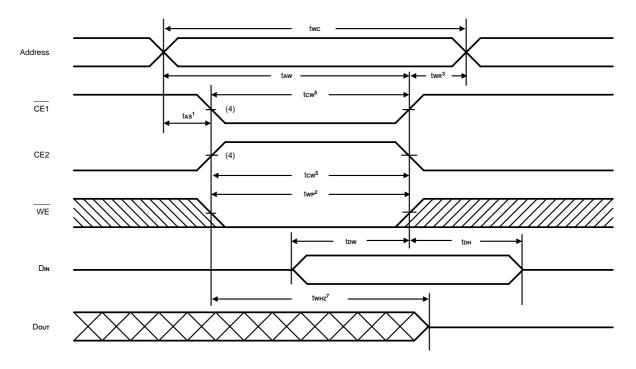
Read Cycle 4 (1)



Notes: 1. WE is high for Read Cycle.

- 2. Device is continuously enabled $\overline{CE1}$ = V_{IL} and CE2 = V_{IH}.
- 3. Address valid prior to or coincident with $\overline{\text{CE1}}$ transition low.
- 4. $\overline{OE} = VIL$.
- 5. Transition is measured ± 500 mV from steady state. This parameter is sampled and not 100% tested.
- 6. CE2 is high.
- 7. CE1 is low.
- 8. Address valid prior to or coincident with CE2 transition high.

Write Cycle 1 (6)


(Write Enable Controlled)

Timing Waveforms (continued)

Write Cycle 2 (Chip Enable Controlled)

Notes: 1. tas is measured from the address valid to the beginning of Write.

- 2. A Write occurs during the overlap (twp) of a low $\overline{\text{CE1}}$, a high CE2 and a low $\overline{\text{WE}}$.
- 3. twn is measured from the earliest of $\overline{\text{CE1}}$ or $\overline{\text{WE}}$ going high or CE2 going low to the end of the Write cycle.
- 4. If the CE1 low transition or the CE2 high transition occurs simultaneously with the WE low transition or after the WE transition, outputs remain in a high impedance state.
- 5. tcw is measured from the later of $\overline{CE1}$ going low or CE2 going high to the end of Write.
- 6. \overline{OE} is continuously low. ($\overline{OE} = V_{IL}$)
- 7. Transition is measured $\pm 500 \text{mV}$ from steady state. This parameter is sampled and not 100% tested.

AC Test Conditions

Input Pulse Levels	0.4V to 2.4V	
Input Rise and Fall Time	5 ns	
Input and Output Timing Reference Levels	1.5V	
Output Load	See Figures 1 and 2	

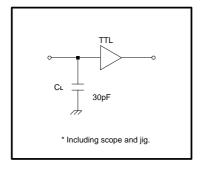


Figure 1. Output Load

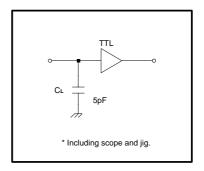
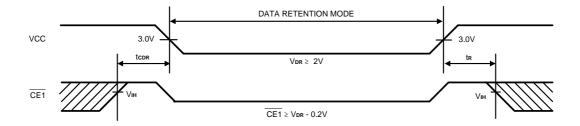
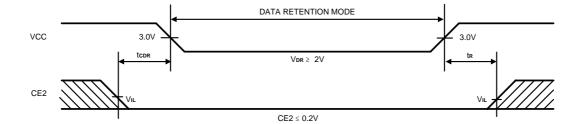


Figure 2. Output Load for tcLz1, tcLz2, toHz, toLz, tcHz1, tcHz2, twHz, and tow

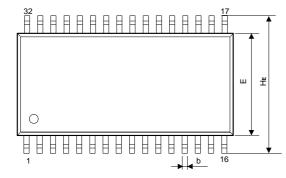

Data Retention Characteristics (TA = -25°C to 85°C)

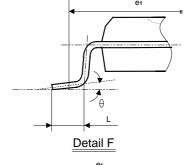
Symbol	Parameter	Min.	Max.	Unit	Conditions
Vdr1	VCC for Data Retention	2.0	3.6	V	CE1 ≥ VCC - 0.2V
Vdr2	VCC for Data Retention	2.0	3.6	V	CE2 ≤ 0.2V,
Iccdr1	Data Retention Current	-	1*	μΑ	$\frac{\text{VCC} = 2\text{V},}{\text{CE1} \ge \text{VCC} - 0.2\text{V},}$ $\text{Vin} \ge 0\text{V}$
Iccdr2		-	1*	μΑ	$\label{eq:controller} \begin{split} &VCC=2V,\\ &CE2\leq 0.2V,\\ &V\text{in}\;\geq 0V \end{split}$
tcdr	Chip Disable to Data Retention Time	0	-	ns	See Retention Waveform
tr	Operation Recovery Time	5	-	ms	

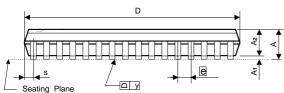

^{*} LP62S1024B-55LLT/70LLT lccpr: max. $1\mu A$ at $T_A = 0^{\circ}C$ to + $40^{\circ}C$

Low VCC Data Retention Waveform (1) (CE1 Controlled)

Low VCC Data Retention Waveform (2) (CE2 Controlled)


Ordering Information

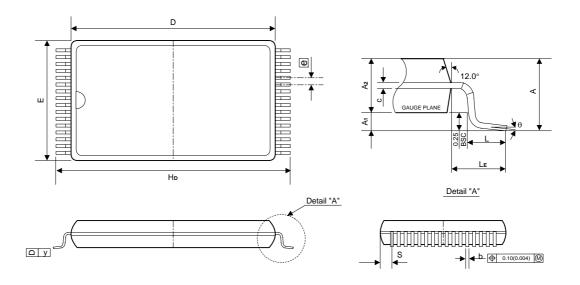

Part No.	Access Time (ns)	Operating Current Max. (mA)	Standby Current Max. (μΑ)	Package	
LP62S1024BM-55LLT		55 30	5	32L SOP	
LP62S1024BM-55LLTF				32L Pb-Free SOP	
LP62S1024BV-55LLT				32L TSOP	
LP62S1024BV-55LLTF	55			32L Pb-Free TSOP	
LP62S1024BX-55LLT				32L TSSOP	
LP62S1024BX-55LLTF				32L Pb-Free TSSOP	
LP62S1024BU-55LLT				36L CSP	
LP62S1024BU-55LLTF				36L Pb-Free CSP	
LP62S1024BM-70LLT	70		5	32L SOP	
LP62S1024BM-70LLTF				32L Pb-Free SOP	
LP62S1024BV-70LLT		70 30		32L TSOP	
LP62S1024BV-70LLTF				32L Pb-Free TSOP	
LP62S1024BX-70LLT				32L TSSOP	
LP62S1024BX-70LLTF					32L Pb-Free TSSOP
LP62S1024BU-70LLT				36L CSP	
LP62S1024BU-70LLTF				36L Pb-Free CSP	



SOP (W.B.) 32L Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm	
Α	0.118 Max.	3.00 Max.	
A1	0.004 Min.	0.10 Min.	
A2	0.106±0.005	2.69±0.13	
b	0.016 +0.004	0.41 +0.10	
	-0.002	-0.05	
С	0.008 +0.004	0.20 +0.10	
	-0.002	-0.05	
D	0.805 Typ. (0.820 Max.)	20.45 Typ. (20.83 Max.)	
Е	0.445±0.010	11.30±0.25	
e	0.050 ±0.006	1.27±0.15	
e 1	0.525 NOM.	13.34 NOM.	
HE	0.556±0.010	14.12±0.25	
L	0.031±0.008	0.79±0.20	
LE	0.055±0.008	1.40±0.20	
S	0.044 Max.	1.12 Max.	
у	0.004 Max.	0.10 Max.	
θ	0° ~ 10°	0° ~ 10°	

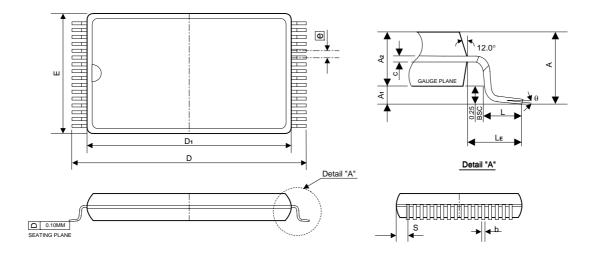

Notes:

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- 3. Dimension e₁ is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.

TSOP 32L TYPE I (8 X 20mm) Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm	
Α	0.047 Max.	1.20 Max.	
A1	0.004±0.002	0.10±0.05	
A2	0.039±0.002	1.00±0.05	
b	0.008±0.001	0.20±0.03	
С	0.006±0.001	0.15±0.02	
D	0.724±0.004	18.40±0.10	
Е	0.315±0.004	8.00±0.10	
е	0.020 TYP.	0.50 TYP.	
Hd	0.787±0.007	20.00±0.20	
L	0.020±0.004	0.50±0.10	
LE	0.031 TYP.	0.80 TYP.	
S	0.0167 TYP.	0.425 TYP.	
Υ	0.004 Max.	0.10 Max.	
θ	0° ~ 6°	0° ~ 6°	

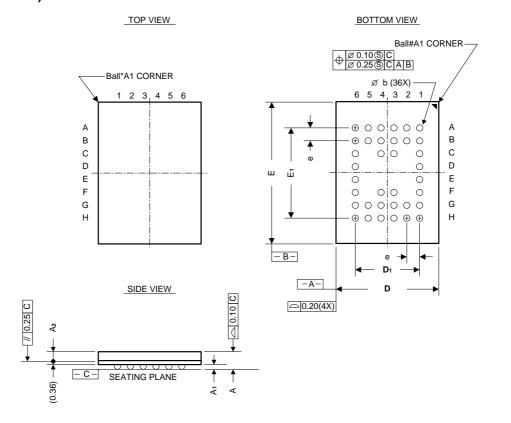

Notes:

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- 3. Dimension e₁ is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.

TSSOP 32L TYPE I (8 X 13.4mm) Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches	Dimensions in mm
Α	0.049 Max.	1.25 Max.
A1	0.002 Min.	0.05 Min.
A2	0.039±0.002	1.00±0.05
b	0.008±0.001	0.20±0.03
С	0.006±0.0003	0.15±0.008
Е	0.315±0.004	8.00±0.10
е	0.020 TYP.	0.50 TYP.
D	0.528±0.008	13.40±0.20
D1	0.465±0.004	11.80±0.10
L	0.02±0.008	0.50±0.20
LE	0.0266 Min.	0.675 Min.
S	0.0109 TYP.	0.278 TYP.
у	0.004 Max.	0.10 Max.
θ	0° ~ 6°	0° ~ 6°


Notes:

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- 3. Dimension e₁ is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.

36LD CSP (6 x 8 mm) Outline Dimensions

unit: mm

Comple ed	Dimensions in mm			
Symbol	MIN.	NOM.	MAX.	
Α	1.00	1.10	1.20	
A ₁	0.16	0.21	0.26	
A ₂	0.48	0.53	0.58	
D	5.80	6.00	6.20	
Е	7.80	8.00	8.20	
D ₁		3.75		
E ₁		5.25		
е		0.75		
b	0.25	0.30	0.35	

Note:

- 1. THE BALL DIAMETER, BALL PITCH, STAND-OFF & PACKAGE THICKNESS ARE DIFFERENT FROM JEDEC SPEC MO192 (LOW PROFILE BGA FAMILY).
- 2. PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 3. DIMENSION b IS MEASURED AT THE MAXIMUM.
- 4. THEERE SHALL BE A MINIMUM CLEARANCE OF 0.25mm BETWEEN THE EDGE OF THE SOLDER BALL AND THE BODY EDGE.