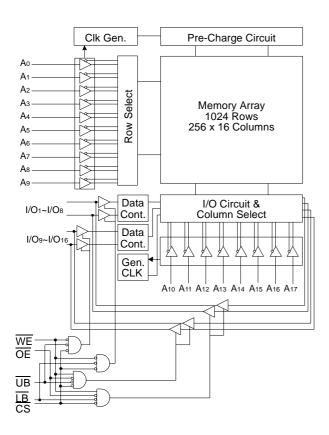
4Mb Async. Fast SRAM Ordering Information

Org.	Part Number	VDD(V)	Speed (ns)	PKG	Temp. & Power			
1M x4	K6R4004C1D-J(K)C(I) 10	5	10	J : 32-SOJ				
512K x8	K6R4004V1D-J(K)C(I) 08/10	3.3	8/10	K : 32-SOJ(LF)	C : Commercial Temperature Normal Power Range			
	K6R4008C1D-J(K,T,U)C(I) 10	5	10	J : 36-SOJ K : 36-SOJ(LF)	I : Industrial Temperature Normal Power Range			
	K6R4008V1D-J(K,T,U)C(I) 08/10	3.3	8/10	T : 44-TSOP2 U : 44-TSOP2(LF)	L : Commercial Temperature ,Low Power Range			
	K6R4016C1D-J(K,T,U,E)C(I) 10	5	10	J : 44-SOJ K : 44-SOJ(LF)	P : Industrial Temperature Low Power Range			
256K x16	K6R4016V1D-J(K,T,U,E)C(I,L,P) 08/10	3.3	8/10	T : 44-TSOP2 U : 44-TSOP2(LF) E : 48-TBGA	,Low Fower Range			

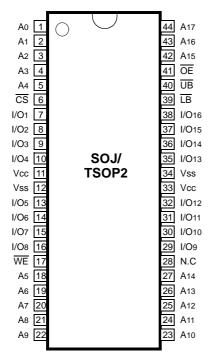


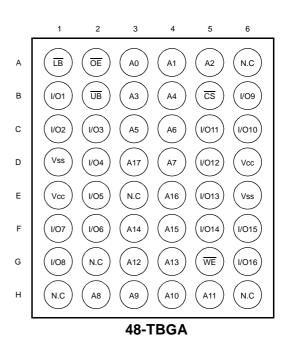
256K x 16 Bit High-Speed CMOS Static RAM

FEATURES

- Fast Access Time 8,10ns(Max.)
- Low Power Dissipation
 - Standby (TTL) : 20mA(Max.) (CMOS) : 5mA(Max.) 1.2mA(Max.)L-Ver. only. Operating K6R4016V1D-08 : 80mA(Max.) K6R4016V1D-10 : 65mA(Max.)
- Single 3.3 ±0.3V Power Supply
- TTL Compatible Inputs and Outputs
- Fully Static Operation
- No Clock or Refresh required
- Three State Outputs
- 2V Minimum Data Retention: L-Ver. only.
- Center Power/Ground Pin Configuration
- Data Byte Control : LB : I/O1~ I/O8, UB : I/O9~ I/O16
- Standard Pin Configuration
 - K6R4016V1D-J : 44-SOJ-400 K6R4016V1D-K : 44-SOJ-400(Lead-Free) K6R4016V1D-T : 44-TSOP2-400BF K6R4016V1D-U : 44-TSOP2-400BF (Lead-Free) K6R4016V1D-E : 48-TBGA with 0.75 Ball pitch (7mm X 9mm)
- Operating in Commercial and Industrial Temperature range.

FUNCTIONAL BLOCK DIAGRAM




GENERAL DESCRIPTION

The K6R4016V1D is a 4,194,304-bit high-speed Static Random Access Memory organized as 262,144 words by 16 bits. The K6R4016V1D uses 16 common input and output lines and has an output enable pin which operates faster than address access time at read cycle. Also it allows that lower and upper byte access by data byte control(\overline{UB} , \overline{LB}). The device is fabricated using SAMSUNG's advanced CMOS process and designed for high-speed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The K6R4016V1D is packaged in a 400mil 44-pin plastic SOJ or TSOP(II) forward or 48 TBGA.

CMOS SRAM

PIN CONFIGURATION (Top View)

PIN FUNCTION

Pin Name	Pin Function
A0 - A17	Address Inputs
WE	Write Enable
CS	Chip Select
OE	Output Enable
LB	Lower-byte Control(I/O1~I/O8)
UB	Upper-byte Control(I/O9~I/O16)
I/O1 ~ I/O16	Data Inputs/Outputs
Vcc	Power(+3.3V)
Vss	Ground
N.C	No Connection

ABSOLUTE MAXIMUM RATINGS*

Parameter		Symbol	Rating	Unit
Voltage on Any Pin Relative to Vss		Vin, Vout	-0.5 to 4.6	V
Voltage on Vcc Supply Rela	ative to Vss	Vcc	-0.5 to 4.6	V
Power Dissipation		PD	1.0	W
Storage Temperature		Тѕтҫ	-65 to 150	°C
Operating Temperature	Commercial	Та	0 to 70	°C
	Industrial	Та	-40 to 85	°C

* Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS*(TA=0 to 70°C)

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	Vcc	3.0	3.3	3.6	V
Ground	Vss	0	0	0	V
Input High Voltage	Viн	2.0	-	Vcc+0.3***	V
Input Low Voltage	Vi∟	-0.3**	-	0.8	V

* The above parameters are also guaranteed at industrial temperature range. ** $V \Vdash (Min) = -2.0V a.c(Pulse Width \le 8ns) for I \le 20mA.$

*** VIH(Max) = Vcc + 2.0V a.c (Pulse Width \leq 8ns) for I \leq 20mA.

DC AND OPERATING CHARACTERISTICS*(TA=0 to 70°C, Vcc=3.3±0.3V, unless otherwise specified)

Parameter	Symbol	Test Condition		Min	Max	Unit	
Input Leakage Current	L	VIN=Vss to Vcc	-2	2	μA		
Output Leakage Current	Ilo	CS=VIH or OE=VIH or WE=VIL VOUT=Vss to Vcc			-2	2	μA
Operating Current	Icc	Min. Cycle, 100% Duty	Com.	8ns	-	80	mA
		\overline{CS} =VIL, VIN=VIH or VIL, IOUT=0mA		10ns	-	2 2	
			Ind.	8ns	-	90	
				10ns	-	2 2 80 65 90 75 20 5 2.4 0.4	
Standby Current	lsв	Min. Cycle, CS=Vін			-	20	mA
	ISB1	f=0MHz, CS≥Vcc-0.2V,	No	rmal	-	-2 2 -2 2 - 80 - 65 - 90 - 75 - 20 - 5 - 2.4 - 0.4	
		VIN≥Vcc-0.2V or VIN≤0.2V	L-v	er.**	-	2.4	
Output Low Voltage Level	Vol	IoL=8mA			-	0.4	V
Output High Voltage Level	Vон	lон=-4mA			2.4	-	V

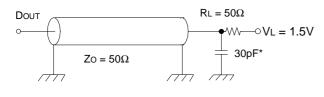
* The above parameters are also guaranteed at industrial temperature range. ** L-var is only supported with TBGA package type.

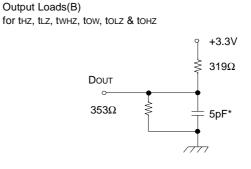
CAPACITANCE*(TA=25°C, f=1.0MHz)

Item	Symbol	Test Conditions	ТҮР	Max	Unit
Input/Output Capacitance	Ci/O	VI/O=0V	-	8	pF
Input Capacitance	CIN	Vin=0V	-	6	pF

* Capacitance is sampled and not 100% tested.

CMOS SRAM


AC CHARACTERISTICS (TA=0 to 70°C, Vcc=3.3±0.3V, unless otherwise noted.)


TEST CONDITIONS*

Parameter	Value
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	3ns
Input and Output timing Reference Levels	1.5V
Output Loads	See below

* The above test conditions are also applied at industrial temperature range.

Output Loads(A)

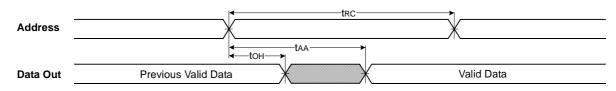
* Capacitive Load consists of all components of the test environment.

* Including Scope and Jig Capacitance

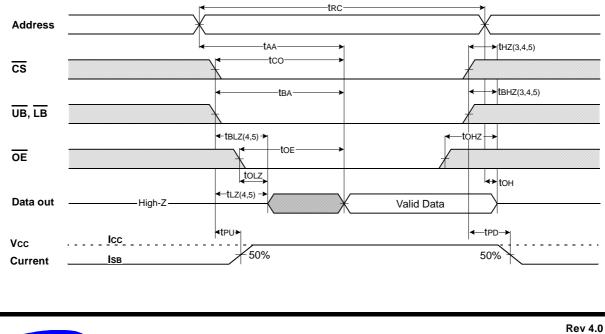
READ CYCLE*

Demonster	Question	K6R401	6V1D-08	K6R401	l lmit	
Parameter	Symbol	Min	Max	Min	Max	Unit
Read Cycle Time	tRC	8	-	10	-	ns
Address Access Time	taa	-	8	-	10	ns
Chip Select to Output	tco	-	8	-	10	ns
Output Enable to Valid Output	tOE	-	4	-	5	ns
UB, LB Access Time	tва	-	4	-	5	ns
Chip Enable to Low-Z Output	tLZ	3	-	3	-	ns
Output Enable to Low-Z Output	toLz	0	-	0	-	ns
UB, LB Enable to Low-Z Output	tBLZ	0	-	0	-	ns
Chip Disable to High-Z Output	tHZ	0	4	0	5	ns
Output Disable to High-Z Output	tohz	0	4	0	5	ns
UB, LB Disable to High-Z Output	tвнz	0	4	0	5	ns
Output Hold from Address Change	toн	3	-	3	-	ns
Chip Selection to Power Up Time	tPU	0	-	0	-	ns
Chip Selection to Power DownTime	tPD	-	8	-	10	ns

* The above parameters are also guaranteed at industrial temperature range.


WRITE CYCLE*

Denemator	Cumb al	K6R401	6V1D-08	K6R401	l lm it	
Parameter	Symbol	Min	Max	Min	Мах	– Unit
Write Cycle Time	twc	8	-	10	-	ns
Chip Select to End of Write	tcw	6	-	7	-	ns
Address Set-up Time	tas	0	-	0	-	ns
Address Valid to End of Write	tAW	6	-	7	-	ns
Write Pulse Width(OE High)	tWP	6	-	7	-	ns
Write Pulse Width(OE Low)	tWP1	8	-	10	-	ns
UB, LB Valid to End of Write	tBW	6	-	7	-	ns
Write Recovery Time	twR	0	-	0	-	ns
Write to Output High-Z	twnz	0	4	0	5	ns
Data to Write Time Overlap	tDW	4	-	5	-	ns
Data Hold from Write Time	tDH	0	-	0	-	ns
End of Write to Output Low-Z	tow	3	-	3	-	ns

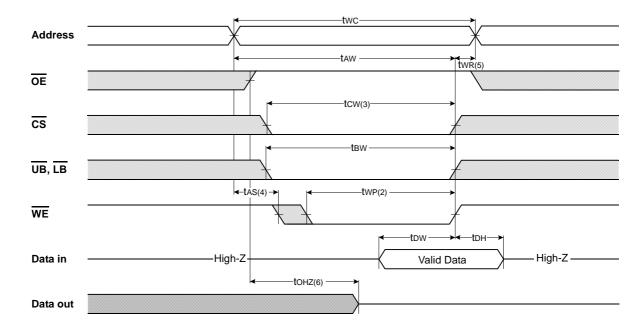

* The above parameters are also guaranteed at industrial temperature range.

TIMING DIAGRAMS

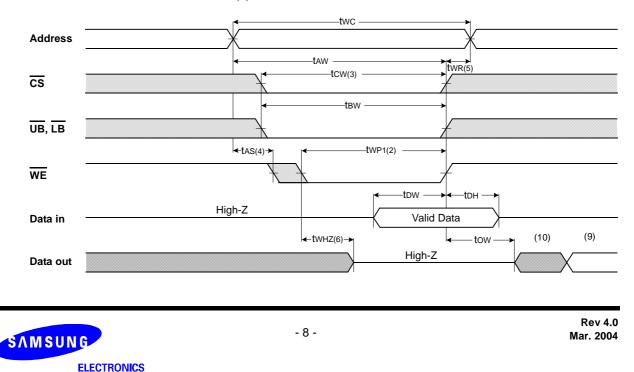
TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, CS=OE=VIL, WE=VIH, UB, LB=VIL)

TIMING WAVEFORM OF READ CYCLE(2) (WE=VIH)

SAMSUNG

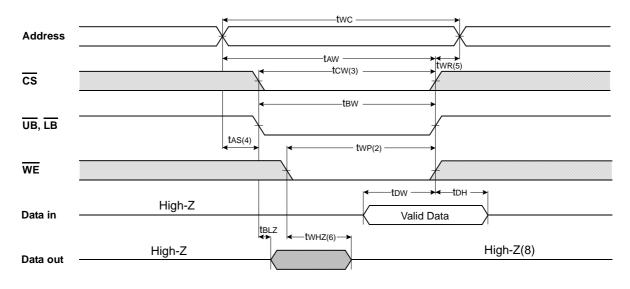

ELECTRONICS

NOTES(READ CYCLE)


- 1. $\overline{\text{WE}}$ is high for read cycle.
- All read cycle timing is referenced from the last valid address to the first transition address.
 thz and tohz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to VoH or VoL levels.
- 4. At any given temperature and voltage condition, tHz(Max.) is less than tLz(Min.) both for a given device and from device to device.
- Transition is measured ±200mV from steady state voltage with Load(B). This parameter is sampled and not 100% tested.
 Device is continuously selected with CS=VIL

- 7. Address valid prior to coincident with CS transition low.
 8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

TIMING WAVEFORM OF WRITE CYCLE(1) (DE Clock)


TIMING WAVEFORM OF WRITE CYCLE(2) (OE=Low fixed)

TIMING WAVEFORM OF WRITE CYCLE(3) (CS=Controlled)

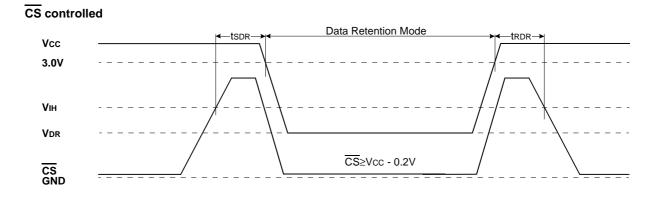
TIMING WAVEFORM OF WRITE CYCLE(4) (UB, LB Controlled)

NOTES(WRITE CYCLE)

- 1. All write cycle timing is referenced from the last valid address to the first transition address.
- 2. A write occurs during the overlap of a low CS, WE, LB and UB. A write begins at the latest transition CS going low and WE going low; A write ends at the earliest transition CS going high or WE going high. twp is measured from the beginning of write to the end of write.
- 3. tcw is measured from the later of \overline{CS} going low to end of write.
- 4. tas is measured from the address valid to the beginning of write.
- 5. two is measured from the end of write to the address change. two applied in case a write ends as \overline{CS} or \overline{WE} going high.
- 6. If OE, CS and WE are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not . be applied because bus contention can occur.
 - 7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle. 8. If CS goes low simultaneously with WE going or after WE going low, the outputs remain high impedance state.
- 9. Dout is the read data of the new address. 10. When CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

FUNCTIONAL DESCRIPTION

CS	WE	OE	LB	UB	Mode	I/O	Pin	Supply Current
03	VVE	UE	LD	UВ	Wode	I/O1~I/O8	I/O9~I/O16	Supply Current
Н	x	X*	x	Х	Not Select	High-Z	High-Z	ISB, ISB1
L	н	н	x	х	Output Disable	High-Z	High-Z	Icc
L	x	x	н	н				
L	н	L	L	н	Read	Dout	High-Z	Icc
			н	L		High-Z	Dout	
			L	L		Dout	Dout	
L	L	x	L	н	Write	DIN	High-Z	Icc
			н	L		High-Z	Din	
			L	L		DIN	DIN	

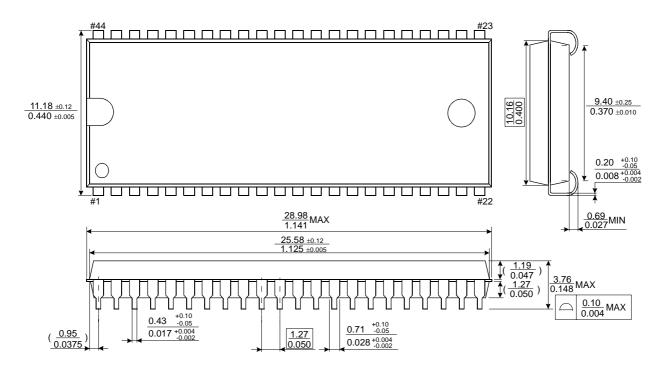

* X means Don't Care.

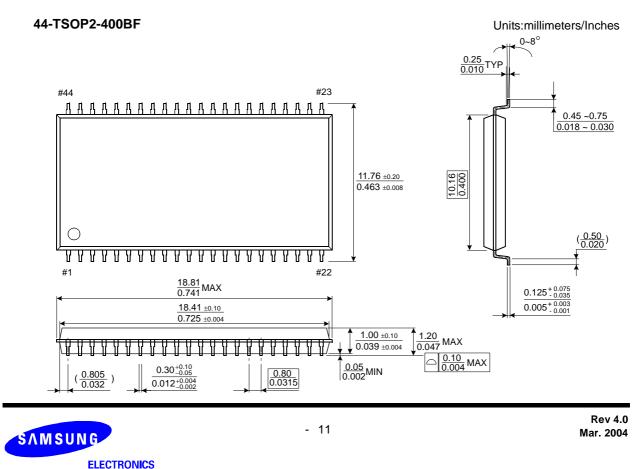
DATA RETENTION CHARACTERISTICS*(TA=0 to 70°C)

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Vcc for Data Retention	Vdr	CS ≥Vcc - 0.2V	2.0	-	3.6	V
Data Retention Current	IDR	Vcc=3.0V, CS≥Vcc - 0.2V VIN ≥ Vcc - 0.2V or VIN≤0.2V	-	-	2.0	0
		Vcc=2.0V, CS ≥Vcc - 0.2V Vin≥Vcc - 0.2V or Vin≤0.2V	-	-	1.4	mA
Data Retention Set-Up Time	tSDR	See Data Retention	0	-	-	ns
Recovery Time	trdr	Wave form(below)	5	-	-	ms

* The above parameters are also guaranteed at industrial temperature range. Data Retention Characteristic is for L-ver only.

DATA RETENTION WAVE FORM

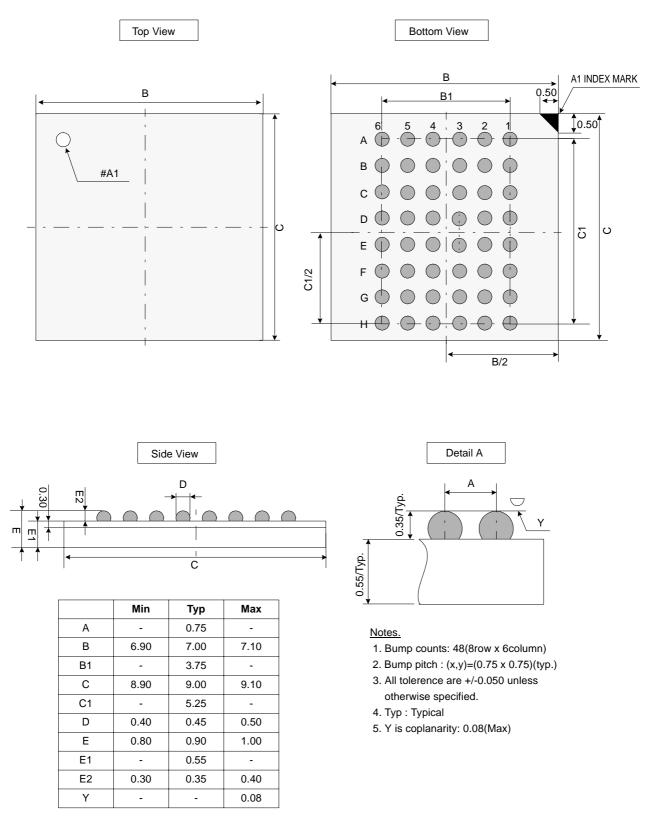

SAMSUNG **ELECTRONICS**


CMOS SRAM

PACKAGE DIMENSIONS

Units:millimeters/Inches

44-SOJ-400



CMOS SRAM

PACKAGE DIMENSIONS

Units : millimeter.

