MECHANICAL and PACKAGING

- CASE: Hermetically sealed glass DO-213AA MELF (SOD-80, LL34) case package.
- TERMINALS: Tin/lead plated or RoHS compliant matte-tin (on commercial grade only) over copper clad steel. Solderable per MIL-STD-750, method 2026.
- POLARITY: Cathode end is banded.
- MOUNTING: The axial coefficient of expansion (COE) of this device is approximately +6PPM/°C. The COE of the mounting surface system should be selected to provide a suitable match with this device.
- MARKING: Part number.
- TAPE & REEL option: Standard per EIA-296. Consult factory for quantities.
- WEIGHT: Approximately 0.2 grams.
- See <u>Package Dimensions</u> on last page.

SYMBOLS & DEFINITIONS							
Symbol	Definition						
С	Capacitance: The capacitance in pF at a frequency of 1 MHz and specified voltage.						
f	frequency						
I _R	Reverse Current: The dc current flowing from the external circuit into the cathode terminal at the specified voltage V _R .						
Io	Average Rectified Output Current: The Output Current averaged over a full cycle with a 50 Hz or 60 Hz sine-wave input and a 180 degree conduction angle.						
t _{rr}	Reverse Recovery Time: The time interval between the instant the current passes through zero when changing from the forward direction to the reverse direction and a specified decay point after a peak reverse current occurs.						
$V_{(BR)}$	Breakdown Voltage: A voltage in the breakdown region.						
V _F	Forward Voltage: A positive dc anode-cathode voltage the device will exhibit at a specified forward current.						
V _R	Reverse Voltage: A positive dc cathode-anode voltage below the breakdown region.						
V _{RWM}	Working Peak Reverse Voltage: The peak voltage excluding all transient voltages (ref JESD282-B). Also sometimes known historically as PIV.						

ELECTRICAL CHARACTERISTICS @ T_A = 25 °C unless otherwise noted

TYPE NUMBER	MINIMUM BREAKDOWN VOLTAGE	MAXIMUM FORWARD VOLTAGE	MAXIMUM FORWARD VOLTAGE	WORKING PEAK REVERSE VOLTAGE	MAXIMUM REVERSE LEAKAGE CURRENT		$\label{eq:maximum} \begin{aligned} \text{MAXIMUM} \\ \text{CAPACITANCE} \\ \text{@ $V_R = 0$} \\ \text{VOLTS} \\ \text{f = 1.0 MHz} \end{aligned}$
	V _(BR) @ 10 μA	V _F @ 1 mA	V _F @ I _F	V _{RWM}	I _R @ V _R		Ст
	Volts	Volts	V @ mA	V (pk)	nA	Volts	pF
1N5711UR-1	70	0.41	1.0 @ 15	50	200	50	2.0
1N5712UR-1	20	0.41	1.0 @ 35	16	150	16	2.0
1N6857UR-1	20	0.35	0.75 @ 35	16	150	16	4.5
1N6858UR-1	70	0.36	0.65 @ 15	50	200	50	4.5
CDLL2810	20	0.41	1.0 @ 35	50	100	15	2.0
CDLL5711	70	0.41	1.0 @ 15	50	200	50	2.0
CDLL5712	20	0.41	1.0 @ 35	16	150	16	2.0
CDLL6263	60	0.41	1.0 @ 15	16	200	50	2.2
CDLL6857	20	0.35	0.75 @ 35	16	150	16	4.5
CDLL6858	70	0.36	0.65 @ 15	50	200	50	4.5

NOTE:

1. Effective minority carrier lifetime (τ) is 100 pico seconds.

GRAPHS

FIGURE 1

I-V Curve showing typical Forward Voltage Variation

Temperature for the 1N5712UR-1, CDLL5712 and CDLL2810 Schottky Diodes

FIGURE 2

1N5712UR-1, CDLL5712 and CDLL2810 Typical variation of Reverse
Current (I_R) vs Reverse Voltage (V_R) at Various Temperatures

GRAPHS

FIGURE 3

I – V curve showing typical Forward Voltage Variation
With Temperature Schottky Diode 1N5711UR-1

GRAPHS

FIGURE 5

Typical Dynamic Resistance (R_D) vs Forward Current (I_F)