HMC369* PRODUCT PAGE QUICK LINKS

Last Content Update: 12/18/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC369LP3 Evaluation Board

DOCUMENTATION

Data Sheet

• HMC369 Data Sheet

TOOLS AND SIMULATIONS

• HMC369 S-Parameter

REFERENCE MATERIALS 🖵

Product Selection Guide

 RF, Microwave, and Millimeter Wave IC Selection Guide 2017

Quality Documentation

- Package/Assembly Qualification Test Report: 16L 3x3mm QFN Package (QTR: 11003 REV: 02)
- Package/Assembly Qualification Test Report: LP2, LP2C, LP3, LP3B, LP3C, LP3D, LP3F, LP3G (QTR: 2014-0364)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

DESIGN RESOURCES

- HMC369 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all HMC369 EngineerZone Discussions.

SAMPLE AND BUY 🖳

Visit the product page to see pricing options.

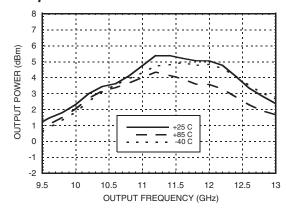
TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

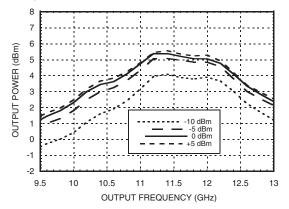
DOCUMENT FEEDBACK \Box

Submit feedback for this data sheet.

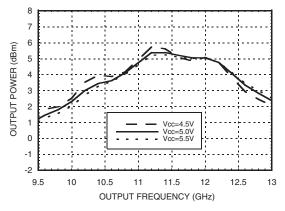
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.



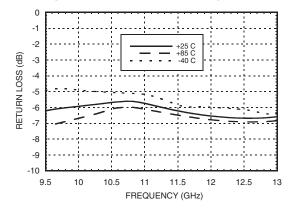
v04.0210



SMT GaAs HBT MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 12.7 GHz OUTPUT


Output Power vs. Temperature @ 0 dBm Drive Level

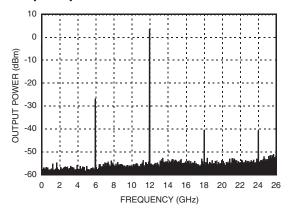
Output Power vs. Drive Level


Output Power vs. Supply Voltage @ 0 dBm Drive Level

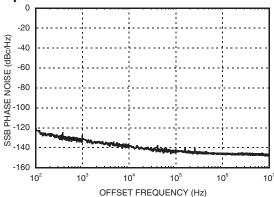
Input Return Loss vs. Temperature

Output Return Loss vs. Temperature

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.


HMC369LP3 / 369LP3E

v04.0210



SMT GaAs HBT MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 12.7 GHz OUTPUT

Output Spectrum

SSB Phase Noise Performance, Fout= 10.66 GHz, Input Power= 0 dBm

HMC369LP3 / 369LP3E

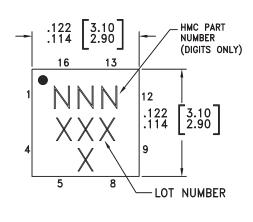
v04.0210

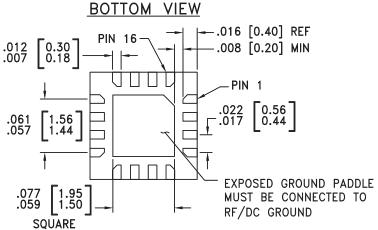
SMT GaAs HBT MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 12.7 GHz OUTPUT

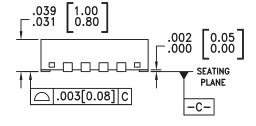
Absolute Maximum Ratings

RF Input (Vcc = +5V)	+20 dBm
Vcc	+5.5V
Channel Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 6.8 mW/°C above 85 °C)	440 mW
Thermal Resistance (R _{th}) (junction to ground paddle)	147.8 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C

Typical Supply Current vs. Vcc


Vcc (V)	Icc (mA)
4.5	45
5.0	46
5.5	47


Note: Multiplier will operate over full voltage range shown above.



ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC369LP3	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	369 XXXX
HMC369LP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	369 XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

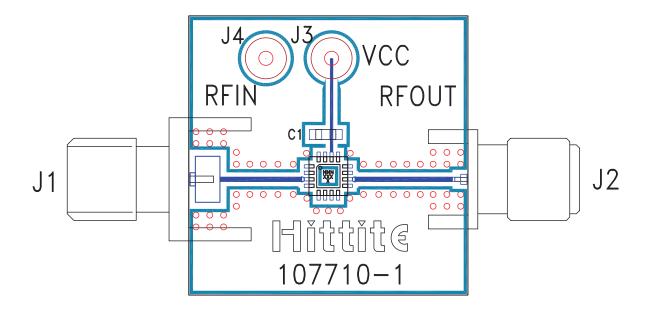
For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

v04.0210 SMT GaAs HBT MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 12.7 GHz OUTPUT

Pin Description

Pin Number	Function	Description	Interface Schematic
1, 2, 5 - 8, 11 - 13, 15, 16	N/C	The pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
3	RFIN	RF input needs to be DC blocked only if there is an external DC voltage applied to RFIN.	RFIN ○
4, 9	GND	All ground leads and ground paddle must be soldered to PCB RF/DC ground.	Ģ GND =
10	RFOUT	Multiplied Output. AC coupled. No external DC blocks necessary.	— —○ RFOUT
14	Vcc	Supply voltage 5V ± 0.5V.	

ANALOGDEVICES


HMC369LP3 / 369LP3E

v04.0210

SMT GaAs HBT MMIC x2 ACTIVE FREQUENCY MULTIPLIER, 9.9 - 12.7 GHz OUTPUT

Evaluation PCB

List of Materials for Evaluation PCB 107712 [1]

Item	Description
J1, J2	PCB Mount SMA Connector
J3, J4	DC Pin
C1	0.01 μF Capacitor, 0603 Pkg.
U1	HMC369LP3 / HMC369LP3E x2 Active Multiplier
PCB [2]	107710 Eval Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. The evaluation circuit board shown is available from Hittite upon request.