TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Dual-Supply Operation	3
Single-Supply Operation	4

Absolute Maximum Ratings	6
ESD Caution	(
Pin Configuration and Function Descriptions	
Typical Performance Characteristics	8
Terminology	10
Test Circuits	1
Applications Information	13
Outline Dimensions	14
Ordering Guide	14

REVISION HISTORY

11/09—Rev. 0 to Rev. A

Changes to Analog Signal Range Parameter	
and to On Resistance, Ron Parameter, Table 1	. 3
Change to Digital Input Capacitance, $C_{ m IN}$ Parameter, Table 2	. 4
Changes to Table 4 and to Absolute Maximum Ratings Section	6
Added Table 5; Renumbered Sequentially	. 7
Updated Outline Dimensions	14
Changes to Ordering Guide	14
-	

1/02—Revision 0: Initial Version

SPECIFICATIONS

DUAL-SUPPLY OPERATION

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C1	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V_{SS} to V_{DD}	V	
On Resistance, Ron	85			Ωtyp	$V_s = \pm 3 \text{ V}$, $I_s = -1 \text{ mA}$; see Figure 14
	115	140	160	Ω max	$V_s = \pm 3 \text{ V}, I_s = -1 \text{ mA}; \text{ see Figure 14}$
On-Resistance Match Between Channels, ΔR _{ON}	2			Ωtyp	$V_S = \pm 3 \text{ V, } I_S = -1 \text{ mA}$
	4	5.5	6.5	Ω max	$V_S = \pm 3 \text{ V, } I_S = -1 \text{ mA}$
On-Resistance Flatness, R _{FLAT(ON)}	25			Ωtyp	$V_S = \pm 3 \text{ V, } I_S = -1 \text{ mA}$
	40	55	60	Ω max	$V_S = \pm 3 \text{ V, } I_S = -1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
Source Off Leakage, I _{S(OFF)}	±0.01			nA typ	$V_D = \pm 4.5 \text{ V, VS} = \mp 4.5 \text{ V; see Figure 15}$
	±0.1	±0.25	±2	nA max	$V_D = \pm 4.5 \text{ V, VS} = \mp 4.5 \text{ V; see Figure 15}$
Drain Off Leakage, I _{D(OFF)}	±0.01			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}; \text{ see Figure 15}$
3 , = (= 1,)	±0.1	±0.25	±2	nA max	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V}; \text{ see Figure 15}$
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.01	_0.20		nA typ	$V_D = V_S = \pm 4.5 \text{ V}$; see Figure 16
Charmer on Ecanage, 10(0N), 15(0N)	±0.01	± 0.25	±6	nA max	$V_D = V_S = \pm 4.5 \text{ V}$, see Figure 16
DIGITAL INPUTS	20.1	_ 0.23		TII CITICAL	V ₀ V ₃ ± 1.5 V ₁ 5 cc + 19 d cc + 10
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		0.0	μA typ	V _{IN} = V _{INI} or V _{INH}
input carrein, inc or initi	0.000		±0.1	μA max	V _{IN} = V _{INI} or V _{INH}
Digital Input Capacitance, C _{IN}	2			pF typ	THE STATE OF THE S
DYNAMIC CHARACTERISTICS ²				1. 71.	
ton	45			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 3.0 V$; see Figure 17
CON	65	75	90	ns max	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 3.0 \text{V}$; see Figure 17
t _{OFF}	25	73	70	ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$, $V_S = 3.0 \text{ V}$, see Figure 17
COFF	40	45	50	ns max	$R_L = 300 \Omega$, $C_L = 35 \text{ pF}$, $V_S = 3.0 \text{ V}$, see Figure 17
Break-Before-Make Time Delay, t _{RBM}	15	13	30	ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_{S1} = V_{S2} = 3.0 \text{V}$; see Figure 18
Dream Derore mane mine Delay, Colon			10	ns min	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_{S1} = V_{S2} = 3.0 \text{V}$; see Figure 18
Charge Injection	-0.5		. •	pC typ	$V_S = 0 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF}; \text{ see Figure 19}$
Off Isolation	-65			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 20
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 21
–3 dB Bandwidth	680			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22
C _{S(OFF)}	5			pF typ	f = 1 MHz
C _D (OFF)	5			pF typ	f = 1 MHz
$C_{D(ON)}$, $C_{S(ON)}$	5			pF typ	f = 1 MHz
POWER REQUIREMENTS				1 /1	$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or 5.5 V
			1.0	μA max	Digital inputs = 0 V or 5.5 V
Iss	0.001			μA typ	Digital inputs = 0 V or 5.5 V
			1.0	μA max	Digital inputs = 0 V or 5.5 V

 $^{^1}$ The temperature range for the Y version is -40°C to +125°C. 2 Guaranteed by design; not subject to production test.

SINGLE-SUPPLY OPERATION

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	+25°C	−40°C to +85°C	-40°C to +125°C1	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V_{DD}	V	
On Resistance, R _{ON}	210			Ωtyp	$V_s = 3.5 \text{ V}, I_s = -1 \text{ mA}$; see Figure 14
	290	350	380	Ω max	$V_s = 3.5 \text{ V}, I_s = -1 \text{ mA}$; see Figure 14
On-Resistance Match	3			Ωtyp	$V_s = 3.5 \text{ V}, I_s = -1 \text{ mA}$
Between Channels, ΔR_{ON}					
	10	12	13	Ω max	$V_s = 3.5 \text{ V}, I_s = -1 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 5.5 \text{ V}$
Source Off Leakage, I _{S(OFF)}	±0.01			nA typ	$V_S = 1 \text{ V/4.5 V, } V_D = 4.5 \text{ V/1 V; see Figure 15}$
	±0.1	±0.25	±2	nA max	$V_S = 1 \text{ V/4.5 V, } V_D = 4.5 \text{ V/1 V; see Figure 15}$
Drain Off Leakage, ID(OFF)	±0.01			nA typ	$V_S = 1 \text{ V/4.5 V, } V_D = 4.5 \text{ V/1 V; see Figure 15}$
	±0.1	±0.25	±2	nA max	$V_S = 1 \text{ V/4.5 V, } V_D = 4.5 \text{ V/1 V; see Figure 15}$
Channel On Leakage, ID(ON), IS(ON)	±0.01			nA typ	$V_S = V_D = 1 \text{ V or } 4.5 \text{ V}$; see Figure 16
	±0.1	±0.25	±6	nA max	$V_S = V_D = 1 \text{ V or } 4.5 \text{ V; see Figure } 16$
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	70			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 3.0 \text{V}$; see Figure 17
	100	130	150	ns max	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 3.0 \text{V}$; see Figure 17
t _{OFF}	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 3.0 \text{V}$; see Figure 17
	40	45	50	ns max	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_S = 3.0 \text{V}$; see Figure 17
Break-Before-Make Time Delay, t _{BBM}	25			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.0 V$; see Figure 18
			10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 3.0 V$; see Figure 18
Charge Injection	1			pC typ	$V_S = 0 \text{ V, } R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 19}$
Off Isolation	-62			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 20
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 21
−3 dB Bandwidth	680			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22
$C_{S(OFF)}$	5			pF typ	f = 1 MHz
$C_D(OFF)$	5			pF typ	f = 1 MHz
C _{D(ON)} , C _{S(ON)}	5			pF typ	f = 1 MHz
POWER REQUIREMENTS					V _{DD} = 5.5 V
I_{DD}	0.001			μA typ	Digital inputs = 0 V or 5.5 V
			1.0	μA max	Digital inputs = 0 V or 5.5 V

 $^{^1}$ The temperature range for the Y version is $-40^\circ C$ to $+125^\circ C.$ 2 Guaranteed by design; not subject to production test.

 V_{DD} = 3 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	+25°C	-40°C to +85°C	-40°C to +125°C1	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V_{DD}	V	
On Resistance, R _{ON}	380	420	460	Ω typ	$V_s = 1.5 \text{ V}, I_s = -1 \text{ mA}$; see Figure 14
LEAKAGE CURRENTS					$V_{DD} = 3.3 \text{ V}$
Source Off Leakage, I _{S(OFF)}	±0.01			nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}; \text{ see Figure 15}$
	±0.1	±0.25	± 2	nA max	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}; \text{ see Figure 15}$
Drain Off Leakage, I _{D(OFF)}	±0.01			nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}; \text{ see Figure 15}$
	±0.1	±0.25	±2	nA max	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V}; \text{ see Figure 15}$
Channel On Leakage, I _{D(ON)} , I _{S(ON)}	±0.01			nA typ	$V_S = V_D = 1 \text{ V or } 3 \text{ V}$; see Figure 16
	±0.1	±0.25	±6	nA max	$V_S = V_D = 1 \text{ V or } 3 \text{ V}$; see Figure 16
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	$V_{IN} = V_{INL}$ or V_{INH}
Digital Input Capacitance, C _{IN}	2			pF typ	
DYNAMIC CHARACTERISTICS ²				. ,,	
t _{on}	130			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$; see Figure 17
	185	230	260	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$; see Figure 17
toff	40			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$; see Figure 17
	55	60	65	ns max	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_S = 2 V$; see Figure 17
Break-Before-Make Time Delay, t _{BBM}	50			ns typ	$R_L = 300 \Omega$, $C_L = 35 \text{pF}$, $V_{S1} = V_{S2} = 2 \text{V}$; see Figure 18
			10	ns min	$R_L = 300 \Omega$, $C_L = 35 pF$, $V_{S1} = V_{S2} = 2 V$; see Figure 18
Charge Injection	1.5			pC typ	$V_S = 0 \text{ V}$, $R_S = 0 \Omega$, $C_L = 1 \text{ nF}$; see Figure 19
Off Isolation	-62			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 20
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$; see Figure 21
–3 dB Bandwidth	680			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 22
C _{S(OFF)}	5			pF typ	f = 1 MHz
$C_{D(OFF)}$	5			pF typ	f = 1 MHz
$C_{D(ON)}$, $C_{S(ON)}$	5			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = 3.3 \text{ V}$
I_{DD}	0.001			μA typ	Digital inputs = 0 V or 3.3 V
			1.0	μA max	Digital inputs = 0 V or 3.3 V

 $^{^1}$ The temperature range for the Y version is -40°C to +125°C. 2 Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted

Table 4

Rating
13 V
−0.3 V to +6.5 V
+0.3 V to -6.5 V
$V_{SS} - 0.3 \text{ V to } V_{DD} + 0.3 \text{ V}$
$GND - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA, whichever occurs first
20 mA (pulsed at 1 ms, 10% duty cycle maximum)
10 mA
7.5 mA
−40°C to +125°C
−65°C to +150°C
150°C
150.4°C/W
80.6°C/W
300°C
220°C
260(+0/-5)°C
20 sec to 40 sec

¹Overvoltages at IN, S, or D are clamped by internal diodes. The current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

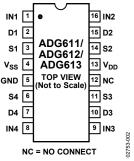


Figure 2. Pin Configuration

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	IN1	Switch 1 Digital Control Input.
2	D1	Drain Terminal of Switch 1. Can be an input or output.
3	S1	Source Terminal of Switch 1. Can be an input or output.
4	V_{SS}	Most Negative Power Supply Terminal. Tie this pin to GND when using the device with single-supply voltages.
5	GND	Ground (0 V) Reference.
6	S4	Source Terminal of Switch 4. Can be an input or output.
7	D4	Drain Terminal of Switch 4. Can be an input or output.
8	IN4	Switch 4 Digital Control Input.
9	IN3	Switch 3 Digital Control Input.
10	D3	Drain Terminal of Switch 3. Can be an input or output.
11	S3	Source Terminal of Switch 3. Can be an input or output.
12	NC	Not Internally Connected.
13	V_{DD}	Most Positive Power Supply Terminal.
14	S2	Source Terminal of Switch 2. Can be an input or output.
15	D2	Drain Terminal of Switch 2. Can be an input or output.
16	IN2	Switch 2 Digital Control Input.

Table 6. ADG611/ADG612 Truth Table

ADG611 Input	ADG612 Input	Switch Condition
0	1	On
1	0	Off

Table 7. ADG613 Truth Table

Logic	Switch 1, Switch 4	Switch 2, Switch 3
0	Off	On
1	On	Off

TYPICAL PERFORMANCE CHARACTERISTICS

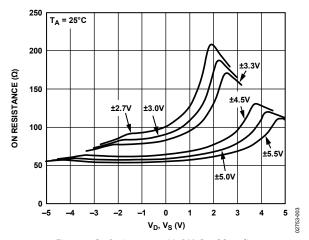


Figure 3. On Resistance vs. VD (Vs), Dual Supplies

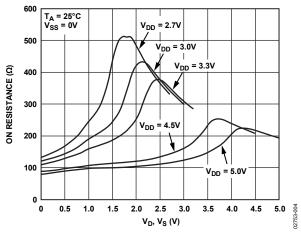


Figure 4. On Resistance vs. V_D (V_S), Single Supply

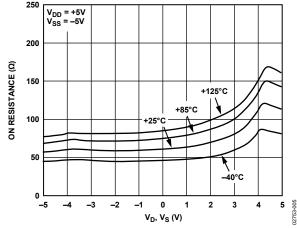


Figure 5. On Resistance vs. V_D (V_S) for Various Temperatures, Dual Supplies

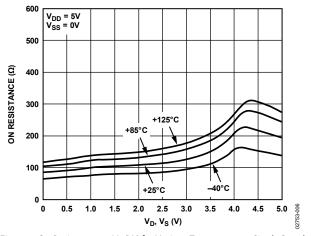


Figure 6. On Resistance vs. V_D (V_S) for Various Temperatures, Single Supply

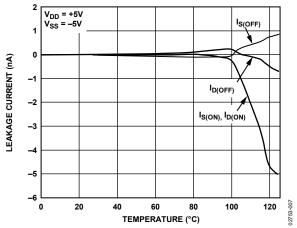


Figure 7. Leakage Current vs. Temperature, Dual Supplies

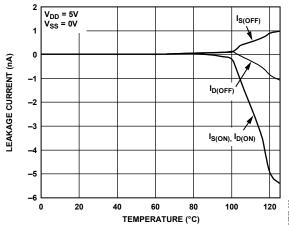


Figure 8. Leakage Current vs. Temperature, Single Supply

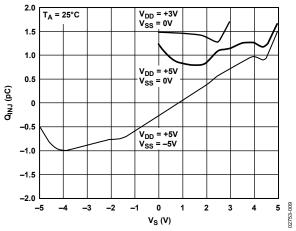


Figure 9. Charge Injection vs. Source Voltage

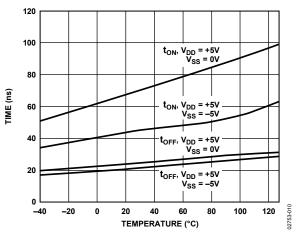


Figure 10. t_{ON}/t_{OFF} Times vs. Temperature

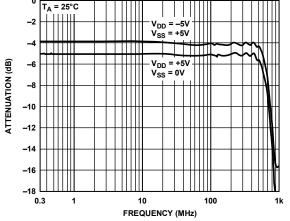


Figure 11. On Response vs. Frequency

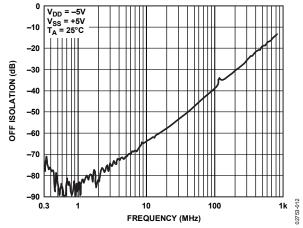


Figure 12. Off Isolation vs. Frequency

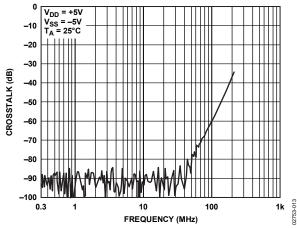


Figure 13. Crosstalk vs. Frequency

TERMINOLOGY

 \mathbf{V}_{DD}

Most positive power supply potential.

Vss

Most negative power supply potential.

 $\mathbf{I}_{ ext{DD}}$

Positive supply current.

 I_{SS}

Negative supply current.

GND

Ground (0 V) reference.

S

Source terminal. Can be an input or output.

D

Drain terminal. Can be an input or output.

IN

Logic control input.

 $V_D(V_S)$

Analog voltage on Terminal D and Terminal S.

Ron

Ohmic resistance between Terminal D and Terminal S.

 ΔR_{ON}

On-resistance match between any two channels, that is,

 $R_{\text{ONMAX}} - R_{\text{ONMIN}}$.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

 $I_{S(OFF)}$

Source leakage current with the switch off.

 $I_{D(OFF)}$

Drain leakage current with the switch off.

 $I_{D(ON)}$, $I_{S(ON)}$

Channel leakage current with the switch on.

 V_{INL}

Maximum input voltage for Logic 0.

 $\mathbf{V}_{\mathsf{INF}}$

Minimum input voltage for Logic 1.

 I_{INL} , I_{INH}

Input current of the digital input.

CSOFF

Off switch source capacitance. Measured with reference to ground.

 $C_{D(OFF)}$

Off switch drain capacitance. Measured with reference to ground.

 $C_{D(ON)}$, $C_{S(ON)}$

On switch capacitance. Measured with reference to ground.

 C_{IN}

Digital input capacitance.

ton

Delay between applying the digital control input and the output switching on (see Figure 17).

tor

Delay between applying the digital control input and the output switching off (see Figure 17).

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

On Response

Frequency response of the on switch.

Insertion Loss

Loss due to the on resistance of the switch.

TEST CIRCUITS

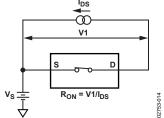


Figure 14. On Resistance

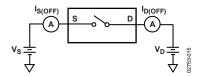


Figure 15. Off Leakage

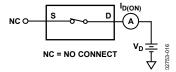


Figure 16. On Leakage

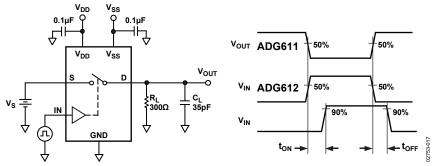


Figure 17. Switching Times

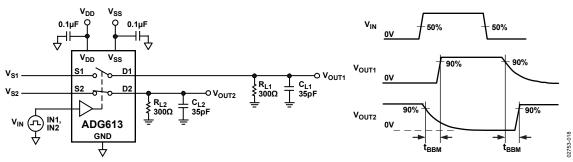


Figure 18. Break-Before-Make Time Delay

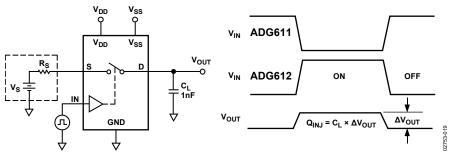


Figure 19. Charge Injection

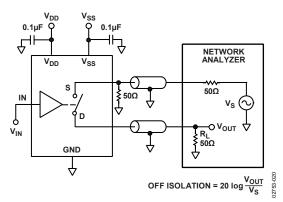


Figure 20. Off Isolation

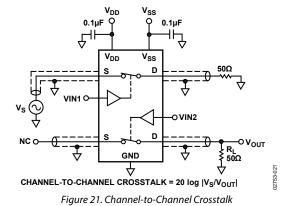
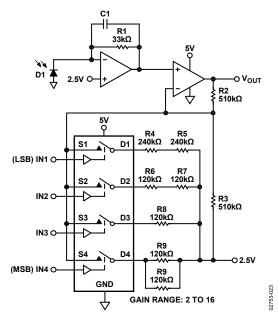
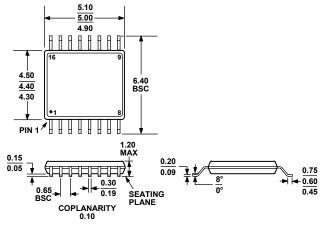
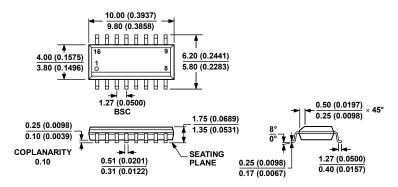


Figure 22. Bandwidth

APPLICATIONS INFORMATION

Figure 23 illustrates a photodetector circuit with programmable gain. With the resistor values shown in this figure, gains in the range of 2 to 16 can be achieved by using different combinations of switches.


Figure 23. Photodetector Circuit with Programmable Gain

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 24. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-012-AC

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 25. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-16) Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG611YRUZ ¹	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG611YRUZ-REEL ¹	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG611YRUZ-REEL71	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG611YRZ ¹	−40°C to +125°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG612YRUZ ¹	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG612YRUZ-REEL ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG612YRUZ-REEL71	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG612WRUZ-REEL ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613YRUZ ¹	−40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613YRUZ-REEL ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG613YRUZ-REEL7 ¹	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

 $^{^{1}}$ Z = RoHS Compliant Part.

NOTES

ADG611	1/ADG612	2/ADG613
--------	----------	----------

NOTES

