TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagram	1
Product Highlights	1
Revision History	2
Specifications	3
Dual Supply	3
Single Supply	4

REVISION HISTORY

5/14—Rev. A to Rev. B

Updated Outline Dimensions	
Changes to Ordering Guide	14
5/05—Rev. 0 to Rev. A	
Changes to Format	Universal
Deleted CERDIP Package and T Grade	Universal
Changes to Features and Product Highlights	1
Changes to Test Conditions in Table 2	
Changes to Figure 11	
Changes to Trench Isolation Section	
Updated Outline Dimensions	13
Changes to Ordering Guide	14

4/94-Revision 0: Initial Version

Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Typical Performance Characteristics	7
Test Circuits	9
Terminology	11
Trench Isolation	12
Outline Dimensions	
Ordering Guide	

SPECIFICATIONS

DUAL SUPPLY¹

 V_{DD} = +15 V ± 10%, V_{SS} = -15 V ± 10%, V_L = +5 V ± 10% (ADG444), GND = 0 V, unless otherwise noted.

Table 1.

	B Version			
Parameter	+25°C	-40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V_{SS} to V_{DD}	V	
Ron	40		Ωtyp	$V_D = \pm 8.5 \text{ V}, \text{ I}_S = -10 \text{ mA}$
	70	85	Ωmax	$V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
ΔR _{ON}		4	Ωtyp	$-8.5V \le V_{\text{D}} \le +8.5V$
		9	Ωmax	
Ron Match		1	Ωtyp	$V_D = 0 V, I_S = -10 mA$
		3	Ωmax	
LEAKAGE CURRENTS				$V_{DD} = +16.5 \text{ V}, \text{V}_{SS} = -16.5 \text{ V}$
Source OFF Leakage I _s (OFF)	±0.01		nA typ	$V_{\rm D} = +155 \text{ V}$ $V_{\rm S} = \pm 155 \text{ V}$
	+0.5	+3	nA max	See Figure 15
Drain OFF Leakage In (OFF)	+0.01	±9	nA typ	
				$V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V}$
	±0.5	±3	nA max	See Figure 15
Channel ON Leakage I _D , I _S (ON)	±0.08	. 2	nA typ	$V_{\rm S} = V_{\rm D} = \pm 15.5 \text{ V}$
	±0.5	±3	nA max	See Figure 16
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current				
Iinl or Iinh		±0.00001	µA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.5	µA max	
DYNAMIC CHARACTERISTICS ²				
ton	85		ns typ	$R_L = 1 k\Omega$, $C_L = 35 pF$;
	110	170	ns max	$V_s = \pm 10 V$; see Figure 17
toff	45		ns typ	$R_L = 1 k\Omega$, $C_L = 35 pF$;
	60	80	ns max	$V_s = \pm 10 V$; see Figure 17
t _{open}	30		ns typ	$R_L = 1 k\Omega$, $C_L = 35 pF$;
Charge Injection	1		pC typ	$V_{s} = 0 V, R_{s} = 0 \Omega, C_{L} = 1 nF;$
	6		pC max	$V_{DD} = +15 V$, $V_{SS} = -15 V$; see Figure 18
OFF Isolation	60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; $f = 1 MHz$; see Figure 19
Channel-to-Channel Crosstalk	100		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; f= 1 MHz; see Figure 20
Cs (OFF)	4		pF typ	f = 1 MHz
C_D (OFF)	4		pF typ	f = 1 MHz
C _D , C _S (ON)	16		pF typ	f = 1 MHz
POWER REQUIREMENTS				$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
I _{DD}				Digital Inputs = 0 V or 5 V
ADG441/ADG442		80	μA max	
ADG444	0.001		μA typ	
	1	2.5	μA max	
lss	0.0001		μA typ	
	1	2.5	μA max	
I∟ (ADG444 Only)	0.001		μA typ	$V_L = 5.5 V$
	1	2.5	μA max	

¹ Temperature range is: B Version: -40°C to +85°C.

² Guaranteed by design, not subject to production test.

SINGLE SUPPLY¹

 V_{DD} = +12 V ± 10%, V_{SS} = 0 V, V_L = +5 V ± 10% (ADG444), GND = 0 V, unless otherwise noted.

Table 2.

	B Version			
Parameter	+25°C	–40°C to +85°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 to V _{DD}	V	
Ron	70		Ωtyp	$V_D = +3 V$, $+8 V$, $I_S = -5 mA$
	110	130	Ωmax	$V_{DD} = 10.8 V$
ΔR _{on}		4	Ωtyp	$3 V \leq V_D \leq 8 V$
		9	Ωmax	
Ron Match		1	Ωtyp	$V_D = +6 V$, $I_S = -5 mA$
		3	Ωmax	
LEAKAGE CURRENT				V _{DD} = 13.2 V
Source OFF Leakage Is (OFF)	±0.01		nA typ	$V_D = 12.2 \text{ V}/1 \text{ V}, \text{ V}_S = 1 \text{ V}/12.2 \text{ V}$
	±0.5	±3	nA max	See Figure 15
Drain OFF Leakage ID (OFF)	±0.01		nA typ	$V_D = 12.2 \text{ V}/1 \text{ V}, \text{ V}_S = 1 \text{ V}/12.2 \text{ V}$
	±0.5	±3	nA max	See Figure 15
Channel ON Leakage I _D , I _S (ON)	±0.08		nA typ	$V_{\rm S} = V_{\rm D} = 12.2 {\rm V}/1 {\rm V}$
	±0.5	±3	nA max	Figure 16
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
Iinl or Iinh		±0.00001	μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.5	µA max	
DYNAMIC CHARACTERISTICS ²				
t _{on}	105		ns typ	$R_L = 1 k\Omega$, $C_L = 35 pF$
	150	220	ns max	$V_s = 8 V$; Figure 17
toff	40		ns typ	$R_L = 1 k\Omega$, $C_L = 35 pF$
	60	100	ns max	$V_s = 8 V$; Figure 17
topen	50		ns typ	$R_L = 1 k\Omega$, $C_L = 35 pF$
Charge Injection	2		pC typ	$V_{s} = 6 V, R_{s} = 0 \Omega, C_{L} = 1 nF$
	6		pC max	$V_{DD} = 12 V, V_{SS} = 0 V$; see Figure 18
OFF Isolation	60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 19
Channel-to-Channel Crosstalk	100		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 20
Cs (OFF)	7		pF typ	f = 1 MHz
C _D (OFF)	10		pF typ	f = 1 MHz
C _D , C _S (ON)	16		pF typ	f = 1 MHz
POWER REQUIREMENTS				V _{DD} = 13.2 V
I _{DD}				Digital Inputs = 0 V or 5 V
ADG441/ADG442		80	µA max	
ADG444	0.001		μA typ	
	1	2.5	μA max	
I∟ (ADG444 Only)	0.001		μA typ	$V_{L} = 5.5 V$
	1	2.5	μA max	

¹ Temperature range is: B Version: -40°C to +85°C. ² Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$ unless otherwise noted.

Table 3.

Parameter	Rating
V _{DD} to V _{SS}	44 V
V _{DD} to GND	–0.3 V to +25 V
Vss to GND	+0.3 V to -25 V
V _L to GND	-0.3 V to V _{DD} + 0.3 V
Analog, Digital Inputs	V _{ss} – 2 V to V _{DD} + 2 V or 30 mA, Whichever Occurs First
Continuous Current, S or D	30 mA
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle Max)	100 mA
Operating Temperature Range	
Industrial (B Version)	-40°C to +85°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
Lead Temperature, Soldering (10 sec)	300°C
Plastic Package, Power Dissipation	470 mW
θ_{JA} , Thermal Impedance	177°C/W
Lead Temperature, Soldering (10 sec)	260°C
SOIC Package, Power Dissipation	600 mW
$ heta_{JA}$, Thermal Impedance	77°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Truth Table

ADG441/ADG444 IN	ADG442 IN	Switch Condition
0	1	ON
1	0	OFF

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

ADG441/ADG442/ADG444

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. ADG441/ADG442 (DIP/SOIC)

 Table 5. ADG441/ADG442 Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 8, 9, 16	IN1 to IN4	Logic Control Input.
2, 7, 10, 15	D1 to D4	Drain Terminal. May be an input or output.
3, 6, 11, 14	S1 to S4	Source Terminal. May be an input or output.
4	Vss	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it may be connected to ground.
5	GND	Ground (0 V) Reference.
12	NC	No Connect.
13	V _{DD}	Most Positive Power Supply Potential.

Table 6. ADG444 Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 8, 9, 16	IN1 to IN4	Logic Control Input.
2, 7, 10, 15	D1 to D4	Drain Terminal. May be an input or output.
3, 6, 11, 14	S1 to S4	Source Terminal. May be an input or output.
4	Vss	Most Negative Power Supply Potential in Dual Supplies. In single-supply applications, it may be connected
_	C 110	
5	GND	Ground (0 V) Reference.
12	VL	Logic Power Supply (5 V).
13	V _{DD}	Most Positive Power Supply Potential.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Ron as a Function of VD (Vs): Dual Supply

Figure 5. R_{ON} as a Function of V_D (V_S): Single Supply

Figure 6. R_{ON} as a Function of V_D (Vs) for Different Temperatures

Figure 7. Leakage Currents as a Function of $V_S(V_D)$

Figure 8. Crosstalk and Off Isolation vs. Frequency

Figure 9. Ron as a Function of VD (Vs) for Different Temperatures

Figure 10. Leakage Currents as a Function of V_S (V_D)

Figure 11. Charge Injection vs. Source Voltage

Figure 12. Switching Time vs. Bipolar Supply

Figure 13. Switching Time vs. Single Supply

Data Sheet

ADG441/ADG442/ADG444

TEST CIRCUITS

Figure 16. On Leakage

Figure 17. Switching Times

Figure 18. Charge Injection

05233-022

CHANNEL-TO-CHANNEL CROSSTALK = $20 \times \log |V_S/V_{OUT}|$

Figure 20. Channel-to-Channel Crosstalk

Figure 19. Off Isolation

TERMINOLOGY

R_{ON} Ohmic resistance between D and S.

 R_{ON} Match Difference between the R_{ON} of any two channels.

Is (OFF) Source leakage current with the switch OFF.

 \mathbf{I}_{D} (OFF) Drain leakage current with the switch OFF.

 $I_{\rm D},\,I_{\rm S}$ (ON) Channel leakage current with the switch ON.

 $\mathbf{V}_{D}\left(\mathbf{V}_{S}\right)$ Analog voltage on Terminals D, S.

Cs (OFF) OFF switch source capacitance.

 C_D (OFF) OFF switch drain capacitance.

C_D, C_s (ON) ON switch capacitance.

ADG441/ADG442/ADG444

ton

Delay between applying the digital control input and the output switching on.

toff

Delay between applying the digital control input and the output switching off.

topen

Break-before-make delay when switches are configured as a multiplexer.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an OFF switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

TRENCH ISOLATION

In the ADG441A, ADG442A, and ADG444A, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.

In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode becomes forward-biased. A silicon-controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current which, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

Figure 21. Trench Isolation

OUTLINE DIMENSIONS

Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	Package Description	Package Option
ADG441BNZ	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG441BR	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441BR-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441BRZ	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441BRZ-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441ABCHIPS		DIE	
ADG441ABR-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG441ABRZ-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG442BNZ	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG442BRZ	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG442BRZ-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG444BNZ	-40°C to +85°C	16-Lead Plastic Dual In-Line Package [PDIP]	N-16
ADG444BR	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG444BR-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG444BRZ	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16
ADG444BRZ-REEL	-40°C to +85°C	16-Lead Standard Small Outline Package [SOIC_N]	R-16

 1 Z = RoHS Compliant Part. 2 A = Trench isolated.

NOTES

NOTES

www.analog.com