TABLE OF CONTENTS

Features
Applications1
General Description
Product Highlights
Functional Block Diagrams
Revision History
Specifications
Dual Supply3
Single Supply4
REVISION HISTORY
6/10—Rev. C to Rev. D
6/10—Rev. C to Rev. D Updated Outline Dimensions
.,
Updated Outline Dimensions

Absolute Maximum Ratings	
ESD Caution	
Pin Configuration and Function Descriptions	
Typical Performance Characteristics	7
Terminology	9
Applications	10
Test Circuits	11
Outline Dimensions	13
Ordering Guide	15

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, V_{L} = 5 V \pm 10%, GND = 0 V, unless otherwise noted. 1

Table 1.

	В	Version	Т	Version		
Parameter	+25°C	–40°C to +85°C	+25°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH	+25 C	+65 C	+25 C	+125 C	Unit	rest Conditions/Comments
Analog Signal Range		V _{DD} to V _{SS}		V _{DD} to V _{SS}	V	
R _{ON}	25	VDD tO VSS	25	VDD tO VSS		$V_D = \pm 8.5 \text{ V, } I_S = -10 \text{ mA;}$
NON	35	45	35	45	Ω typ Ω max	$V_{DD} = \pm 0.5 \text{ V}, V_{SS} = -10 \text{ IIA},$ $V_{DD} = \pm 13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$
LEAKAGE CURRENTS	33	43	33	43	12 IIIdX	$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$
	101		.01		n A tum	$V_{D} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ $V_{D} = +15.5 \text{ V}/-15.5 \text{ V},$
Source OFF Leakage Is (OFF)	±0.1		±0.1		nA typ	$V_S = +15.5 \text{ V/} + 15.5 \text{ V;}$
	±0.25	±0.25	±0.25	±20	nA max	Figure 15
Drain OFF Leakage I _D (OFF)	±0.1	_00	±0.1	_ _ •	nA typ	$V_D = +15.5 \text{ V/}-15.5 \text{ V},$
Drain or I Italiage is (or i)						$V_S = -15.5 \text{ V/} + 15.5 \text{ V};$
	±0.25	±5	±0.25	±20	nA max	Figure 15
Channel ON Leakage ID, Is (ON)	±0.1		±0.1		nA typ	$V_D = V_S = +15.5 \text{ V/} -15.5 \text{ V};$
-	±0.4	±10	±0.4	± 40	nA max	Figure 16
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, V _{INL}		0.8		0.8	V max	
Input Current						
I _{INL} or I _{INH}	0.005		0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.5		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²						
ton	110		110		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		175		175	ns max	$V_S = \pm 10 \text{ V}$; Figure 17
toff	100		100		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		145		145	ns max	$V_S = \pm 10 \text{ V}$; Figure 17
Break-Before-Make Time Delay, t _D (ADG413 Only)	25		25		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = V_{S2} = 10 V$; Figure 18
Charge Injection	5		5		pC typ	$V_S = 0 \text{ V, } R_S = 0 \Omega, C_L = 10 \text{ nF;}$ Figure 19
OFF Isolation	68		68		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 20
Channel-to-Channel Crosstalk	85		85		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 21
C _s (OFF)	9		9		pF typ	f = 1 MHz
C _D (OFF)	9		9		pF typ	f = 1 MHz
C_D , C_S (ON)	35		35		pF typ	f = 1 MHz
POWER REQUIREMENTS						$V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}; Digital inputs} = 0 \text{ V or } 5 \text{ V}$
I _{DD}	0.0001		0.0001		μA typ	
	1	5	1	5	μA max	
Iss	0.0001		0.0001		μA typ	
	1	5	1	5	μA max	
lι	0.0001		0.0001		μA typ	
	1	5	1	5	μA max	

 $^{^1}$ Temperature ranges are as follows: B versions: -40°C to $+85^\circ\text{C}$; T versions: -55°C to $+125^\circ\text{C}$. 2 Guaranteed by design; not subject to production test.

SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, V_{L} = 5 V \pm 10%, GND = 0 V, unless otherwise noted. 1

		B Version		T Version		
Parameter	+25°C	-40°C to +85°C	+25°C	−55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SIGNAL RANGE		0 V to V _{DD}		0 V to V _{DD}	V	
R _{ON}	40		40		Ωtyp	$0 < V_D = 8.5 \text{ V, } I_S = -10 \text{ mA};$
	80	100	80	100	Ω max	$V_{DD} = 10.8 \text{ V}$
LEAKAGE CURRENTS						V _{DD} = 13.2 V
Source OFF Leakage Is (OFF)	±0.1		±0.1		nA typ	$V_D = 12.2 \text{ V}/1 \text{ V}, V_S = 1 \text{ V}/12.2 \text{ V};$
	±0.25	±5	±0.25	±20	nA max	Figure 15
Drain OFF Leakage I _D (OFF)	±0.1		±0.1		nA typ	$V_D = 12.2 \text{ V}/1 \text{ V}, V_S = 1 \text{ V}/12.2 \text{ V};$
	±0.25	±5	±0.25	±20	nA max	Figure 15
Channel ON Leakage ID, Is (ON)	±0.1		±0.1		nA typ	$V_D = V_S = 12.2 \text{ V/1 V};$
	±0.4	±10	±0.4	±40	nA max	Figure 16
DIGITAL INPUTS						
Input High Voltage, V _{INH}		2.4		2.4	V min	
Input Low Voltage, VINL		0.8		0.8	V max	
Input Current						
I _{INL} or I _{INH}	0.005		0.005		μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
		±0.5		±0.5	μA max	
DYNAMIC CHARACTERISTICS ²						
ton	175		175		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		250		250	ns max	V _s = 8 V; Figure 17
toff	95		95		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
		125		125	ns max	$V_s = 8 V$; Figure 17
Break-Before-Make Time Delay, t _D (ADG413 Only)	25		25		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = V_{S2} = +10 V$; Figure 18
Charge Injection	25		25		pC typ	$V_S = 0 \text{ V, } R_S = 0 \Omega, C_L = 10 \text{ nF;}$ Figure 19
OFF Isolation	68		68		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 20
Channel-to-Channel Crosstalk	85		85		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; Figure 21
C _s (OFF)	9		9		pF typ	f = 1 MHz
C _D (OFF)	9		9		pF typ	f = 1 MHz
C_D , C_S (ON)	35		35		pF typ	f = 1 MHz
POWER REQUIREMENTS						V _{DD} = 13.2 V; Digital inputs = 0 V or 5 V
I _{DD}	0.0001		0.0001		μA typ	
	1	5	1	5	μA max	
I _L	0.0001		0.0001		μA typ	
	1	5	1	5	μA max	V _L = 5.25 V

 $^{^1}$ Temperature ranges are as follows: B versions: –40°C to +85°C; T versions: –55°C to +125°C. 2 Guaranteed by design; not subject to production test.

Table 3. Truth Table (ADG411/ADG412)

ADG411 In	ADG412 In	Switch Condition
0	1	ON
1	0	OFF

Table 4. Truth Table (ADG413)

Logic	Switch 1, 4	Switch 2, 3
0	OFF	ON
1	ON	OFF

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 5.

Table 5.		
Parameters	Ratings	
V _{DD} to V _{SS}	44 V	
V _{DD} to GND	-0.3 V to +25 V	
V _{SS} to GND	+0.3 V to -25 V	
V _L to GND	$-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$	
Analog, Digital Inputs ¹	$V_{SS} - 2V$ to $V_{DD} + 2V$ or 30 mA, whichever occurs first	
Continuous Current, S or D	30 mA	
Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle max)	100 mA	
Operating Temperature Range		
Industrial (B Version)	−40°C to +85°C	
Extended (T Version)	−55°C to +125°C	
Storage Temperature Range	−65°C to +150°C	
Junction Temperature	150°C	
PDIP, Power Dissipation	470 mW	
θ_{JA} Thermal Impedance	117°C/W	
Lead Temperature, Soldering (10 s)	260°C	
SOIC Package, Power Dissipation	600 mW	
θ_{JA} Thermal Impedance	77°C/W	
TSSOP Package, Power Dissipation	450 mW	
θ_{JA} Thermal Impedance	115°C/W	
θ _{JC} Thermal Impedance	35°C/W	
Lead Temperature, Soldering		
Vapor Phase (60 s)	215°C	
Infrared (15 s)	220°C	

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

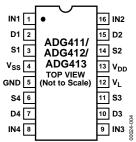


Figure 4. Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1, 8, 9, 16	IN1-IN4	Logic Control Input.
2, 7, 10, 15	D1-D4	Drain Terminal. Can be an input or output.
3, 6, 11, 14	S1-S4	Source Terminal. Can be an input or output.
4	V _{SS}	Most Negative Power Supply Potential in Dual Supplies. In single supply applications, it may be connected to GND.
5	GND	Ground (0 V) Reference.
12	VL	Logic Power Supply (5 V).
13	V_{DD}	Most Positive Power Supply Potential.

TYPICAL PERFORMANCE CHARACTERISTICS

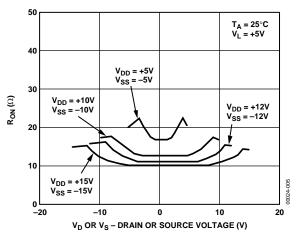


Figure 5. On Resistance as a Function of V_D (V_S) Dual Supplies

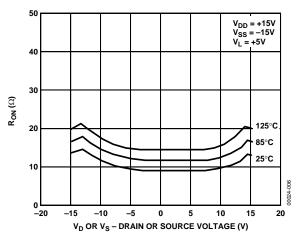


Figure 6. On Resistance as a Function of V_D (V_S) for Different Temperatures

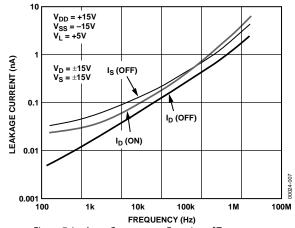


Figure 7. Leakage Currents as a Function of Temperature

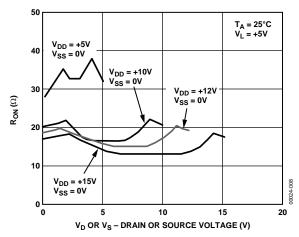


Figure 8. On Resistance as a Function of V_D (V_S) Single Supply

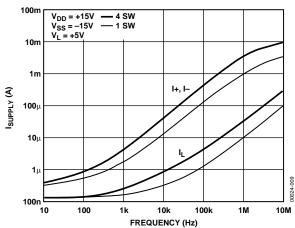


Figure 9. Supply Current vs. Input Switching Frequency

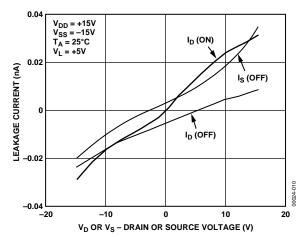
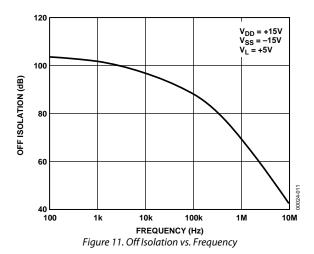
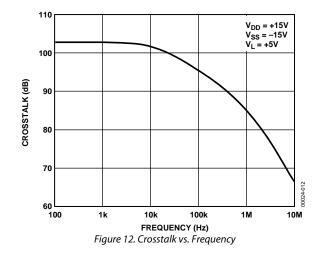




Figure 10. Leakage Currents as a Function of V_D (V_S)

TERMINOLOGY

Ron

Ohmic resistance between D and S.

Is (OFF)

Source leakage current with the switch OFF.

I_D (OFF)

Drain leakage current with the switch OFF.

 I_D , I_S (ON)

Channel leakage current with the switch ON.

 $V_D(V_S)$

Analog voltage on terminals D, S.

Cs (OFF)

OFF switch source capacitance.

C_D (OFF)

OFF switch drain capacitance.

 C_D , C_S (ON)

ON switch capacitance.

 t_{ON}

Delay between applying the digital control input and the output switching on.

OFF

Delay between applying the digital control input and the output switching off.

 $t_{\rm D}$

OFF time or ON time measured between the 90% points of both switches, when switching from one address state to another.

Crosstalk

A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.

Off Isolation

A measure of unwanted signal coupling through an OFF switch.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

APPLICATIONS

Figure 13 illustrates a precise, fast, sample-and-hold circuit. An AD845 is used as the input buffer while the output operational amplifier is an AD711. During the track mode, SW1 is closed and the output $V_{\rm OUT}$ follows the input signal $V_{\rm IN}$. In the hold mode, SW1 is opened and the signal is held by the hold capacitor $C_{\rm H}$.

Due to switch and capacitor leakage, the voltage on the hold capacitor decreases with time. The ADG411/ADG412/ADG413 minimizes this droop due to its low leakage specifications. The droop rate is further minimized by the use of a polystyrene hold capacitor. The droop rate for the circuit shown is typically 30 $\mu V/\mu s.$

A second switch, SW2, which operates in parallel with SW1, is included in this circuit to reduce pedestal error. Since both switches are at the same potential, they have a differential effect on the op amp AD711, which minimizes charge injection effects. Pedestal error is also reduced by the compensation network $R_{\rm C}$ and $C_{\rm C}$. This compensation network also reduces

the hold time glitch while optimizing the acquisition time. Using the illustrated op amps and component values, the pedestal error has a maximum value of 5 mV over the ± 10 V input range. Both the acquisition and settling times are 850 ns.

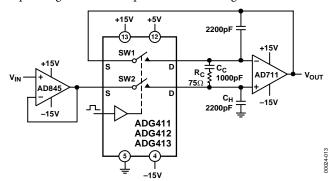


Figure 13. Fast, Accurate Sample-and-Hold

TEST CIRCUITS

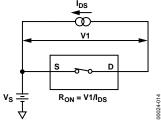


Figure 14. On Resistance

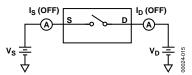


Figure 15. Off Leakage

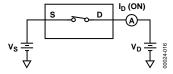
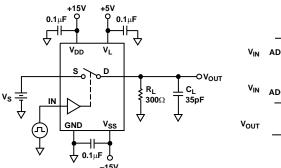



Figure 16. On Leakage

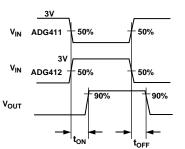
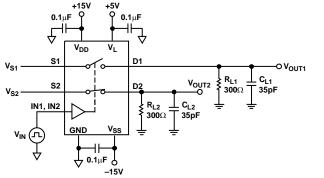



Figure 17. Switching Times

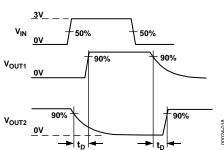


Figure 18. Break-Before-Make Time Delay

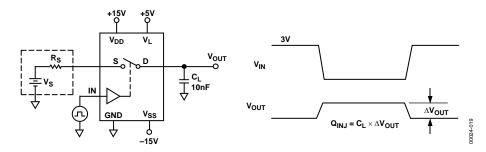


Figure 19. Charge Injection

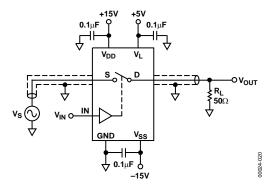


Figure 20. Off Isolation

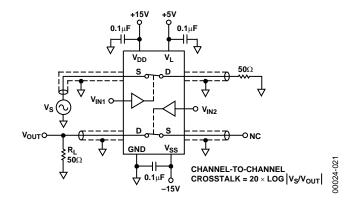
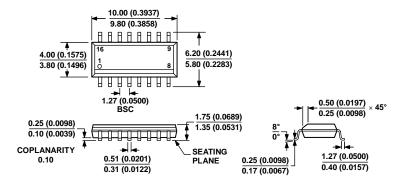



Figure 21. Channel-to-Channel Crosstalk

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AC

CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 22. 16-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-16) Dimensions shown in millimeters and (inches)

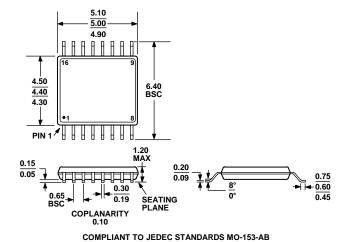
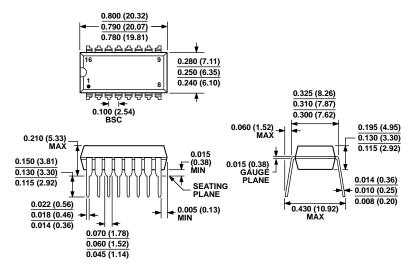



Figure 23. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MS-001-AB

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.

Figure 24. 16-Lead Plastic Dual In-Line Package [PDIP] (N-16)

Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG411BN	−40°C to +85°C	16-Lead P-DIP	N-16
ADG411BNZ	-40°C to +85°C	16-Lead P-DIP	N-16
ADG411BR	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BR-REEL	−40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BR-REEL7	−40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BRZ	−40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BRZ-REEL	−40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BRZ-REEL7	−40°C to +85°C	16-Lead SOIC_N	R-16
ADG411BRU	−40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRU-REEL	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRU-REEL7	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRUZ	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRUZ-REEL	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BRUZ-REEL7	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG411BCHIPS		DIE	
ADG412BN	-40°C to +85°C	16-Lead P-DIP	N-16
ADG412BNZ	-40°C to +85°C	16-Lead P-DIP	N-16
ADG412BR	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BR-REEL	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BR-REEL7	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BRZ	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BRZ-REEL	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BRZ-REEL7	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG412BRU	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRU-REEL	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRU-REEL7	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRUZ	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRUZ-REEL	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG412BRUZ-REEL7	-40°C to +85°C	16-Lead TSSOP	RU-16
ADG413BN	−40°C to +85°C	16-Lead P-DIP	N-16
ADG413BNZ	−40°C to +85°C	16-Lead P-DIP	N-16
ADG413BR	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG413BR-REEL	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG413BRZ	-40°C to +85°C	16-Lead SOIC_N	R-16
ADG413BRZ-REEL	−40°C to +85°C	16-Lead SOIC_N	R-16
ADG413BRUZ	−40°C to +85°C	16-Lead TSSOP	RU-16
ADG413BRUZ-500RL7	−40°C to +85°C	16-Lead TSSOP	RU-16
ADG413BRUZ-REEL	−40°C to +85°C	16-Lead TSSOP	RU-16
ADG413BRUZ-REEL7	-40°C to +85°C	16-Lead TSSOP	RU-16

 $^{^{1}}Z = RoHS$ Compliant Part.

8 D C 111	/	119/1	DC / 1 1 2
ADG411	I / WIII=4	L I // 🕰	1117415
RDUTI	IADU	I	D

NOTES

