74LVX273 Low Voltage Octal D-Type Flip-Flop

interface of 5V systems to 3V systems.

FAIRCHILD

SEMICONDUCTOR

General Description

(clear) all flip-flops simultaneously.

Low Voltage Octal D-Type Flip-Flop

The LVX273 has eight edge-triggered D-type flip-flops with

individual D inputs and Q outputs. The common buffered

Clock (CP) and Master Reset (MR) input load and reset

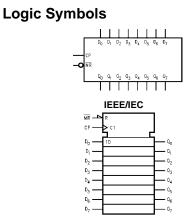
The register is fully edge-triggered. The state of each D input, one setup time before the LOW-to-HIGH clock transition, is transferred to the corresponding flip-flop's Q output. All outputs will be forced LOW independently of Clock or Data inputs by a LOW voltage level on the MR input. The device is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements. The inputs tolerate up to 7V allowing

74LVX273

Ordering	Code:
o ao mg	0040.

Order Number	Package Number	Package Description
74LVX273M	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
74LVX273SJ	M20D	Pb-Free 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LVX273MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
Devices also available	in Tane and Reel Specify	by appending letter suffix "X" to the ordering code

Features


■ Input voltage translation from 5V to 3V

dynamic threshold performance

■ Ideal for low power/low noise 3.3V applications

■ Guaranteed simultaneous switching noise level and

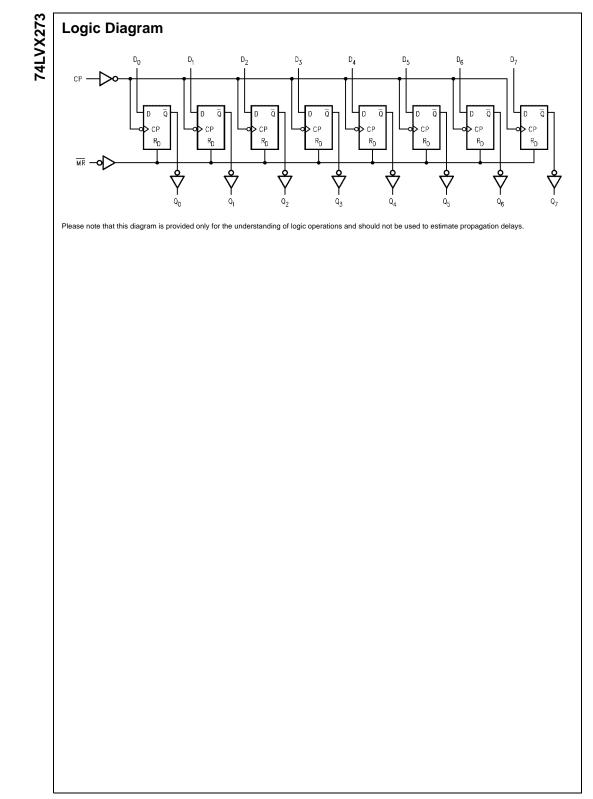
Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

.0	-		
D ₀ —	3	18	— D
D1 -	4	17	- 0
o ₁ —	5	16	— a
Q ₂ -	6	15	— a
D ₂ —	7	14	— D
D3 —	8	13	- 0
Q3 —	9	12	- 0
GND —	10	11	- 0

Pin Descriptions

Pin Names	Description
D ₀ –D ₇	Data Inputs
MR	Master Reset
СР	Clock Pulse Input
Q ₀ –Q ₇	Data Outputs


© 2005 Fairchild Semiconductor Corporation DS011614

Truth Table

Operating Mode		Outputs						
	MR	СР	D _n	Q _n				
Reset (Clear)	L	Х	Х	L				
Load '1'	Н	~	Н	н				
Load '0'	Н	~	L	L				
= HIGH Voltage Level = LOW Voltage Level		X = Immaterial — = LOW-to-HIGH Transition						

www.fairchildsemi.com

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC}) DC Input Diode Current (I _{IK})	-0.5V to +7.0V
V _I = -0.5V	-20 mA
DC Input Voltage (V _I)	-0.5V to 7V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_O = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	–0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	±25 mA
DC V _{CC} or Ground Current	
(I _{CC} or I _{GND})	±75 mA
Storage Temperature (T _{STG})	–65°C to +150°C
Power Dissipation	180 mW

Recommended Operating Conditions (Note 2)

Supply Voltage (V _{CC})	2.0V to 3.6V
Input Voltage (V _I)	0V to 5.5V
Output Voltage (V _O)	0V to V _{CC}
Operating Temperature (T _A)	-40°C to +85°C
Input Rise and Fall Time ($\Delta t / \Delta V$)	0 ns/V to 100 ns/V

74LVX273

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	Vcc		T _A = +25°C	;	T _A = -40°	C to +85°C	Units	Conditions
Cymbol		- 00	Min	Тур	Max	Min	Max	onno	Conditions
VIH	HIGH Level	2.0	1.5			1.5			
	Input Voltage	3.0	2.0			2.0		V	
		3.6	2.4			2.4			
VIL	LOW Level	2.0			0.5		0.5		
	Input Voltage	3.0			0.8		0.8	V	
		3.6			0.8		0.8		
V _{OH}	HIGH Level	2.0	1.9	2.0		1.9			$V_{IN} = V_{IH} \text{ or } V_{IL} \ I_{OH} = -50 \ \mu A$
	Output Voltage	3.0	2.9	3.0		2.9		V	I _{OH} = -50 μA
		3.0	2.58			2.48			I _{OH} = -4 mA
V _{OL}	LOW Level	2.0		0.0	0.1		0.1		$V_{IN} = V_{IH} \text{ or } V_{IL} \ I_{OL} = 50 \ \mu A$
	Output Voltage	3.0		0.0	0.1		0.1	V	I _{OL} = 50 μA
		3.0			0.36		0.44		I _{OL} = 4 mA
I _{OZ}	3-STATE Output	3.6			±0.25		±2.5	μA	$V_{IN} = V_{IH} \text{ or } V_{IL}$
	Off-State Current								$V_{OUT} = V_{CC}$ or GND
I _{IN}	Input Leakage Current	3.6			±0.1		±1.0	μA	V _{IN} = 5.5V or GND
I _{CC}	Quiescent Supply Current	3.6			4.0		40.0	μA	V _{IN} = V _{CC} or GND

Noise Characteristics (Note 3)

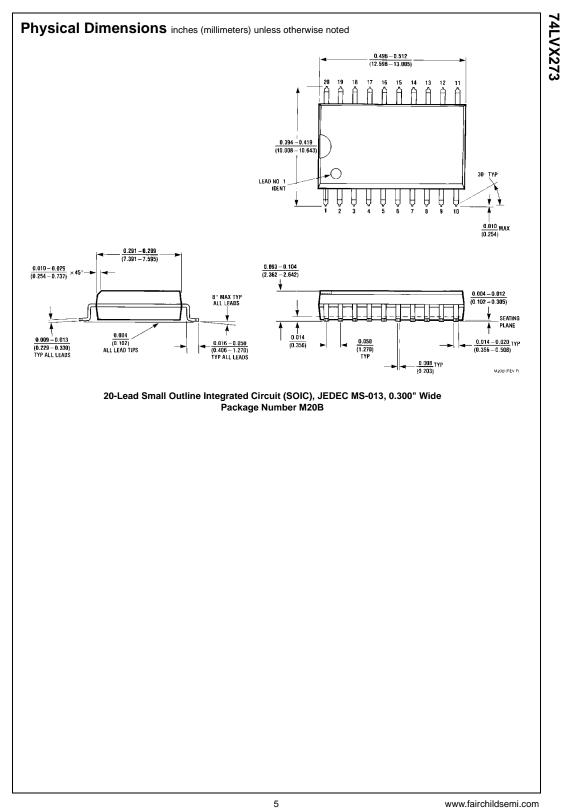
Symbol	Parameter		T _A = 25°C		Units	C ₁ (pF)	
	i didilotori	(V)	Тур	Limit	011110	•L (b.)	
V _{OLP}	Quiet Output Maximum Dynamic V _{OL}	3.3	0.5	0.8	V	50	
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	3.3	-0.5	-0.8	V	50	
V _{IHD}	Minimum HIGH Level Dynamic Input Voltage	3.3		2.0	V	50	
V _{ILD}	Maximum LOW Level Dynamic Input Voltage	3.3		0.8	V	50	

Note 3: Input $t_r = t_f = 3ns$

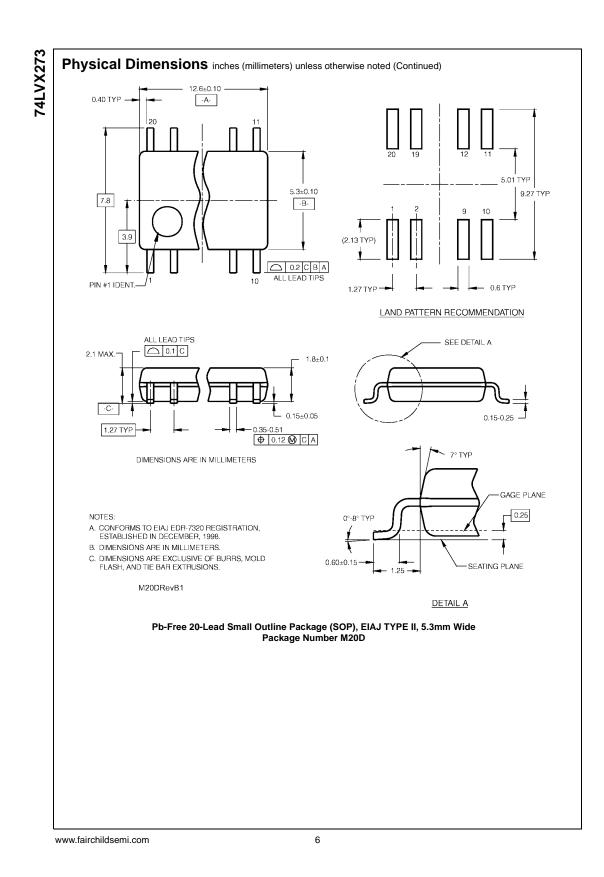
ຕ
~
2
\sim
\mathbf{c}
>
1
4
N

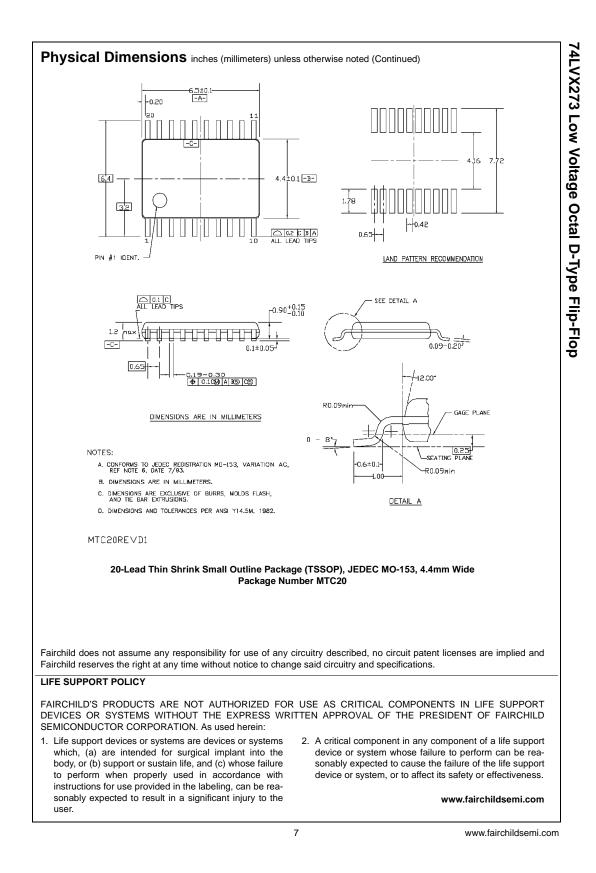
AC Electrical Characteristics

Symbol	Parameter	V _{cc}		$T_A = +25^{\circ}C$		$T_{A} = -40^{\circ}$	C to +85°C	Units	C _L (pF)
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	ol (br.)
t _{PLH}	Propagation	2.7		9.0	16.9	1.0	20.5		15
t _{PHL}	Delay Time			11.5	20.0	1.0	24.0	ns	50
	CP to Q _n	$\textbf{3.3}\pm\textbf{0.3}$		7.1	11.0	1.0	13.0	115	15
				9.6	14.5	1.0	16.5		50
t _{PHL}	Propagation Delay	2.7		9.3	17.8	1.0	20.5		15
	MR to Q _n			11.8	21.1	1.0	24.0	ns	50
		$\textbf{3.3}\pm\textbf{0.3}$		7.3	11.5	1.0	13.5	ns —	15
				9.8	15.0	1.0	17.0		50
t _S	Setup Time	2.7	8.0			9.5			
	D _n to CP	$\textbf{3.3}\pm\textbf{0.3}$	5.5			6.5		ns —	
t _H	Hold Time	2.7	1.0			1.0			
	D _n to CP	$\textbf{3.3}\pm\textbf{0.3}$	1.0			1.0		ns	
t _{REC}	Removal Time	2.7	4.0			4.0			
REC	MR to CP	$\textbf{3.3}\pm\textbf{0.3}$	2.5			2.5		ns —	
t _W	Clock Pulse	2.7	8.0			9.5			
	Width	$\textbf{3.3}\pm\textbf{0.3}$	5.5			6.5		ns —	
t _W	MR Pulse	2.7	7.5			8.5			
	Width	$\textbf{3.3}\pm\textbf{0.3}$	5.0			6.0		ns	
f _{MAX}	Maximum	2.7	55	110		45			15
	Clock		45	60		40			50
	Frequency	$\textbf{3.3}\pm\textbf{0.3}$	95	150		80		MHz	15
			60	90		50			50
t _{OSLH}	Output to Output	2.7		1	1.5		1.5		50
t _{OSHL}	Skew (Note 4)	3.3			1.5		1.5	ns	


Note 4: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|$

Capacitance


Symbol	Parameter		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}$	Units	
	Falanielei	Min	Тур	Max	Min	Max	Units
CIN	Input Capacitance		4	10		10	pF
C _{OUT}	Output Capacitance		6				pF
C _{PD}	Power Dissipation		31				pF
	Capacitance (Note 5)						


Note 5: CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation: $I_{CC(opr.)} = \frac{C_{PD} \times V_{CC} \times f_{|N} + I_{CC}}{8 \text{ (per F/F)}}$

www.fairchildsemi.com

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.